Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenCV with Python By Example

You're reading from   OpenCV with Python By Example Build real-world computer vision applications and develop cool demos using OpenCV for Python

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781785283932
Length 296 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Applying Geometric Transformations to Images FREE CHAPTER 2. Detecting Edges and Applying Image Filters 3. Cartoonizing an Image 4. Detecting and Tracking Different Body Parts 5. Extracting Features from an Image 6. Creating a Panoramic Image 7. Seam Carving 8. Detecting Shapes and Segmenting an Image 9. Object Tracking 10. Object Recognition 11. Stereo Vision and 3D Reconstruction 12. Augmented Reality Index

How do we compute the seams?


Now that we have the energy matrix, we are ready to compute the seams. We need to find the path through the image with the least energy. Computing all the possible paths is prohibitively expensive, so we need to find a smarter way to do this. This is where dynamic programming comes into the picture. In fact, seam carving is a direct application of dynamic programming. We need to start with each pixel in the first row and find our way to the last row. In order to find the path of least energy, we compute and store the best paths to each pixel in a table. Once we've construct this table, the path to a particular pixel can be found by backtracking through the rows in that table.

For each pixel in the current row, we calculate the energy of three possible pixel locations in the next row that we can move to, that is, bottom left, bottom, and bottom right. We keep repeating this process until we reach the bottom. Once we reach the bottom, we take the one with the least...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image