Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Network Science with Python

You're reading from   Network Science with Python Explore the networks around us using network science, social network analysis, and machine learning

Arrow left icon
Product type Paperback
Published in Feb 2023
Publisher Packt
ISBN-13 9781801073691
Length 414 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Knickerbocker David Knickerbocker
Author Profile Icon David Knickerbocker
David Knickerbocker
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Getting Started with Natural Language Processing and Networks
2. Chapter 1: Introducing Natural Language Processing FREE CHAPTER 3. Chapter 2: Network Analysis 4. Chapter 3: Useful Python Libraries 5. Part 2: Graph Construction and Cleanup
6. Chapter 4: NLP and Network Synergy 7. Chapter 5: Even Easier Scraping! 8. Chapter 6: Graph Construction and Cleaning 9. Part 3: Network Science and Social Network Analysis
10. Chapter 7: Whole Network Analysis 11. Chapter 8: Egocentric Network Analysis 12. Chapter 9: Community Detection 13. Chapter 10: Supervised Machine Learning on Network Data 14. Chapter 11: Unsupervised Machine Learning on Network Data 15. Index 16. Other Books You May Enjoy

Technical requirements

In this chapter, we will be using several different Python libraries. The pip install command is listed in each section for installing each library, so just follow along and do the installations as needed. If you run into installation problems, there is usually an answer on Stack Overflow. Google the error!

Before we start, I would like to explain one thing so that the number of libraries we are using doesn’t seem so overwhelming. It is the reason why we use each library that matters.

For most of this book, we will be doing one of three things: network analysis, network visualization, or using network data for machine learning (also known as GraphML).

Anytime we have network data, we will be using NetworkX to use it.

Anytime we are doing analysis, we will probably be using pandas.

The relationship looks like this:

  • Network: NetworkX
  • Analysis: pandas
  • Visualization: scikit-network
  • ML: scikit-learn and Karate Club
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image