Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Natural Language Processing with Java
Natural Language Processing with Java

Natural Language Processing with Java: Techniques for building machine learning and neural network models for NLP , Second Edition

Arrow left icon
Profile Icon Richard M. Reese Profile Icon Richard M. Reese
Arrow right icon
R$50 per month
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2 (3 Ratings)
Paperback Jul 2018 318 pages 2nd Edition
eBook
R$80 R$196.99
Paperback
R$245.99
Subscription
Free Trial
Renews at R$50p/m
Arrow left icon
Profile Icon Richard M. Reese Profile Icon Richard M. Reese
Arrow right icon
R$50 per month
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2 (3 Ratings)
Paperback Jul 2018 318 pages 2nd Edition
eBook
R$80 R$196.99
Paperback
R$245.99
Subscription
Free Trial
Renews at R$50p/m
eBook
R$80 R$196.99
Paperback
R$245.99
Subscription
Free Trial
Renews at R$50p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Natural Language Processing with Java

Finding Parts of Text

Finding parts of text is concerned with breaking text down into individual units, called tokens, and optionally performing additional processing on those tokens. This additional processing can include stemming, lemmatization, stopword removal, synonym expansion, and converting text to lowercase.

We will demonstrate several tokenization techniques found in the standard Java distribution. These are included because sometimes this is all you may need to do the job. There may be no need to import NLP libraries in this situation. However, these techniques are limited. This is followed by a discussion of specific tokenizers or tokenization approaches supported by NLP APIs. These examples will provide a reference for how the tokenizers are used and the type of output they produce. This is followed by a simple comparison of the differences between the approaches...

Understanding the parts of text

There are a number of ways to categorize parts of text. For example, we may be concerned with character-level issues, such as punctuation, with a possible need to ignore or expand contractions. At the word level, we may need to perform different operations, such as the following:

  • Identifying morphemes using stemming and/or lemmatization
  • Expanding abbreviations and acronyms
  • Isolating number units

We cannot always split words with punctuation, because the punctuation is sometimes considered to be part of the word, such as the word can't. We may also be concerned with grouping multiple words to form meaningful phrases. Sentence-detection can also be a factor. We do not necessarily want to group words that cross sentence boundaries.

In this chapter, we are primarily concerned with the tokenization process and a few specialized techniques, such...

What is tokenization?

Tokenization is the process of breaking text down into simpler units. For most text, we are concerned with isolating words. Tokens are split based on a set of delimiters. These delimiters are frequently whitespace characters. Whitespace in Java is defined by the Character class' isWhitespace method. These characters are listed in the following table. However, there may be a need, at times, to use a different set of delimiters. For example, different delimiters can be useful when whitespace delimiters obscure text breaks, such as paragraph boundaries, and detecting these text breaks is important:

Character

Meaning

Unicode space character

(space_separator, line_separator, or paragraph_separator)

\t

U+0009 horizontal tabulation

\n

U+000A line feed

\u000B

U+000B vertical tabulation

\f

U+000C form feed

\r

U+000D...

Simple Java tokenizers

There are several Java classes that support simple tokenization; some of them are as follows:

  • Scanner
  • String
  • BreakIterator
  • StreamTokenizer
  • StringTokenizer

Although these classes provide limited support, it is useful to understand how they can be used. For some tasks, these classes will suffice. Why use a more difficult-to-understand and less-efficient approach when a core Java class can do the job? We will cover each of these classes as they support the tokenization process.

The StreamTokenizer and StringTokenizer classes should not be used for new developments. Instead, the String class' split method is usually a better choice. They have been included here in case you come across them and wonder whether they should be used or not.

Using the Scanner class...

NLP tokenizer APIs

In this section, we will demonstrate several different tokenization techniques using the OpenNLP, Stanford, and LingPipe APIs. Although there are a number of other APIs available, we restricted the demonstration to these APIs. These examples will give you an idea of what techniques are available.

We will use a string called paragraph to illustrate these techniques. The string includes a new line break that may occur in real text in unexpected places. It is defined here:

private String paragraph = "Let's pause, \nand then +
+ "reflect.";

Using the OpenNLPTokenizer...

Understanding normalization

Normalization is a process that converts a list of words to a more uniform sequence. This is useful in preparing text for later processing. By transforming the words into a standard format, other operations are able to work with the data and will not have to deal with issues that might compromise the process. For example, converting all words to lowercase will simplify the searching process.

The normalization process can improve text-matching. For example, there are several ways that the term modem router can be expressed, such as modem and router, modem & router, modem/router, and modem-router. By normalizing these words to the common form, it makes it easier to supply the right information to a shopper.

Understand that the normalization process might also compromise an NLP task. Converting to lowercase letters can decrease the reliability of searches...

Summary

In this chapter, we illustrated various approaches to tokenizing text and performing normalization on text. We started with simple tokenization techniques based on core Java classes, such as the String class' split method and the StringTokenizer class. These approaches can be useful when we decide to forgo the use of the NLP API classes.

We demonstrated how tokenization can be performed using the OpenNLP, Stanford, and LingPipe APIs. We found variations in how tokenization can be performed and options that can be applied in these APIs. A brief comparison of their output was provided.

Normalization was discussed, which can involve converting characters to lowercase, expanding abbreviations, removing stopwords, stemming, and lemmatization. We illustrated how these techniques can be applied using both core Java classes and the NLP APIs.

In the next chapter, Chapter...

Left arrow icon Right arrow icon

Key benefits

  • Use deep learning and NLP techniques in Java to discover hidden insights in text
  • Work with popular Java libraries such as CoreNLP, OpenNLP, and Mallet
  • Explore machine translation, identifying parts of speech, and topic modeling

Description

Natural Language Processing (NLP) allows you to take any sentence and identify patterns, special names, company names, and more. The second edition of Natural Language Processing with Java teaches you how to perform language analysis with the help of Java libraries, while constantly gaining insights from the outcomes. You’ll start by understanding how NLP and its various concepts work. Having got to grips with the basics, you’ll explore important tools and libraries in Java for NLP, such as CoreNLP, OpenNLP, Neuroph, and Mallet. You’ll then start performing NLP on different inputs and tasks, such as tokenization, model training, parts-of-speech and parsing trees. You’ll learn about statistical machine translation, summarization, dialog systems, complex searches, supervised and unsupervised NLP, and more. By the end of this book, you’ll have learned more about NLP, neural networks, and various other trained models in Java for enhancing the performance of NLP applications.

Who is this book for?

Natural Language Processing with Java is for you if you are a data analyst, data scientist, or machine learning engineer who wants to extract information from a language using Java. Knowledge of Java programming is needed, while a basic understanding of statistics will be useful but not mandatory.

What you will learn

  • Understand basic NLP tasks and how they relate to one another
  • Discover and use the available tokenization engines
  • Apply search techniques to find people, as well as things, within a document
  • Construct solutions to identify parts of speech within sentences
  • Use parsers to extract relationships between elements of a document
  • Identify topics in a set of documents
  • Explore topic modeling from a document

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 31, 2018
Length: 318 pages
Edition : 2nd
Language : English
ISBN-13 : 9781788993494
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jul 31, 2018
Length: 318 pages
Edition : 2nd
Language : English
ISBN-13 : 9781788993494
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
R$50 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
R$500 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just R$25 each
Feature tick icon Exclusive print discounts
R$800 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just R$25 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total R$ 798.97
Java Deep Learning Projects
R$306.99
Hands-On Natural Language Processing with Python
R$245.99
Natural Language Processing with Java
R$245.99
Total R$ 798.97 Stars icon

Table of Contents

13 Chapters
Introduction to NLP Chevron down icon Chevron up icon
Finding Parts of Text Chevron down icon Chevron up icon
Finding Sentences Chevron down icon Chevron up icon
Finding People and Things Chevron down icon Chevron up icon
Detecting Part of Speech Chevron down icon Chevron up icon
Representing Text with Features Chevron down icon Chevron up icon
Information Retrieval Chevron down icon Chevron up icon
Classifying Texts and Documents Chevron down icon Chevron up icon
Topic Modeling Chevron down icon Chevron up icon
Using Parsers to Extract Relationships Chevron down icon Chevron up icon
Combined Pipeline Chevron down icon Chevron up icon
Creating a Chatbot Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
(3 Ratings)
5 star 0%
4 star 0%
3 star 0%
2 star 100%
1 star 0%
Cliente Amazon May 15, 2019
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
Libro banale non tecnico. Insegna solo ad usare delle librerie
Amazon Verified review Amazon
Daniel Oct 03, 2018
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
This book explains about the process, but the examples aren’t as detailed. The Python NLP books are way better.
Amazon Verified review Amazon
Marc Lorent Dec 27, 2018
Full star icon Full star icon Empty star icon Empty star icon Empty star icon 2
Aucun des concepts utilisés dans le NLP n'est vraiment expliqué et le livre est ressemble plus â une javadoc des API mentionnées qu'à un véritable livre sur le sujet. A vrai dire il donne l'impression d'être une compilation d'extraits d'articles de Wikimedia.Le seul vrai intérêt de ce livre sont les liens Internet qu'il contient ...
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.