Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing and Computational Linguistics

You're reading from   Natural Language Processing and Computational Linguistics A practical guide to text analysis with Python, Gensim, spaCy, and Keras

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788838535
Length 306 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Bhargav Srinivasa-Desikan Bhargav Srinivasa-Desikan
Author Profile Icon Bhargav Srinivasa-Desikan
Bhargav Srinivasa-Desikan
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. What is Text Analysis? 2. Python Tips for Text Analysis FREE CHAPTER 3. spaCy's Language Models 4. Gensim – Vectorizing Text and Transformations and n-grams 5. POS-Tagging and Its Applications 6. NER-Tagging and Its Applications 7. Dependency Parsing 8. Topic Models 9. Advanced Topic Modeling 10. Clustering and Classifying Text 11. Similarity Queries and Summarization 12. Word2Vec, Doc2Vec, and Gensim 13. Deep Learning for Text 14. Keras and spaCy for Deep Learning 15. Sentiment Analysis and ChatBots 16. Other Books You May Enjoy

Training our dependency parsers

Again, if you have read Chapter 4, Gensim - Vectorizing Text and Transformations and n-grams, Chapter 5, POS-Tagging and Its applications, and Chapter 6, NER-Tagging and Its applications, then you would be comfortable with the theory behind training our own models in spaCy. We would recommend that you go back and read Vector transformations in Gensim section from chapter 4 and Training our own POS-taggers section from chapter 5 to refresh your ideas on what exactly training means in context with machine learning and in particular, spaCy.

Again, the advantage with spaCy is that we don't need to care about the algorithm being used under the hood, or which features are the best to select for dependency parsing - this is usually the hardest part of machine learning research. We know that an optimal learning algorithm has been selected, and all...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime