Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing and Computational Linguistics

You're reading from   Natural Language Processing and Computational Linguistics A practical guide to text analysis with Python, Gensim, spaCy, and Keras

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788838535
Length 306 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Bhargav Srinivasa-Desikan Bhargav Srinivasa-Desikan
Author Profile Icon Bhargav Srinivasa-Desikan
Bhargav Srinivasa-Desikan
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. What is Text Analysis? 2. Python Tips for Text Analysis FREE CHAPTER 3. spaCy's Language Models 4. Gensim – Vectorizing Text and Transformations and n-grams 5. POS-Tagging and Its Applications 6. NER-Tagging and Its Applications 7. Dependency Parsing 8. Topic Models 9. Advanced Topic Modeling 10. Clustering and Classifying Text 11. Similarity Queries and Summarization 12. Word2Vec, Doc2Vec, and Gensim 13. Deep Learning for Text 14. Keras and spaCy for Deep Learning 15. Sentiment Analysis and ChatBots 16. Other Books You May Enjoy

Advanced training tips

In Chapter 8, Topic Models, we explored what topic models are, and how to set them up with both Gensim and scikit-learn. But just setting up a topic model isn't sufficient - a poorly trained topic model would not offer us any useful information.

We've already talked about the most important pretraining tip - preprocessing. It would be quite clear now that garbage in is garbage out, but sometimes even after ensuring it isn't garbage you're putting in, we still get nonsense outputs. In this section, we will briefly discuss what else it is you can do to polish your results.

It would be wise to re-look at Chapter 3, spaCy's Language Model, and Chapter 4, Gensim - Vectorizing Text and Transformations and n-grams, now - they introduce the methods used in preprocessing, which is usually the first advanced training tip given. It is worth...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime