Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Big Data Processing with Hadoop

You're reading from   Modern Big Data Processing with Hadoop Expert techniques for architecting end-to-end big data solutions to get valuable insights

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781787122765
Length 394 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Manoj R Patil Manoj R Patil
Author Profile Icon Manoj R Patil
Manoj R Patil
Prashant Shindgikar Prashant Shindgikar
Author Profile Icon Prashant Shindgikar
Prashant Shindgikar
V Naresh Kumar V Naresh Kumar
Author Profile Icon V Naresh Kumar
V Naresh Kumar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Enterprise Data Architecture Principles 2. Hadoop Life Cycle Management FREE CHAPTER 3. Hadoop Design Consideration 4. Data Movement Techniques 5. Data Modeling in Hadoop 6. Designing Real-Time Streaming Data Pipelines 7. Large-Scale Data Processing Frameworks 8. Building Enterprise Search Platform 9. Designing Data Visualization Solutions 10. Developing Applications Using the Cloud 11. Production Hadoop Cluster Deployment

Enterprise Data Architecture Principles

Traditionally, enterprises have embraced data warehouses to store, process, and access large volumes of data. These warehouses are typically large RDBMS databases capable of storing a very-large-scale variety of datasets. As the data complexity, volume, and access patterns have increased, many enterprises have started adopting big data as a model to redesign their data organization and define the necessary policies around it.

This figure depicts how a typical data warehouse looks in an Enterprise:

As Enterprises have many different departments, organizations, and geographies, each one tends to own a warehouse of their own and presents a variety of challenges to the Enterprise as a whole. For example:

  • Multiple sources and destinations of data
  • Data duplication and redundancy
  • Data access regulatory issues
  • Non-standard data definitions across the Enterprise.
  • Software and hardware scalability and reliability issues
  • Data movement and auditing
  • Integration between various warehouses

It is becoming very easy to build very-large-scale systems at less costs compared to what it was a few decades ago due to several advancements in technology, such as:

  • Cost per terabyte
  • Computation power per nanometer
  • Gigabits of network bandwidth
  • Cloud

With globalization, markets have gone global and the consumers are also global. This has increased the reach manifold. These advancements also pose several challenges to the Enterprises in terms of:

  • Human capital management
  • Warehouse management
  • Logistics management
  • Data privacy and security
  • Sales and billing management
  • Understanding demand and supply

In order to stay on top of the demands of the market, Enterprises have started collecting more and more metrics about themselves; thereby, there is an increase in the dimensions data is playing with in the current situation.

In this chapter, we will learn:

  • Data architecture principles
  • The importance of metadata
  • Data governance
  • Data security
  • Data as a Service
  • Data architecture evolution with Hadoop
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime