Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
MATLAB for Machine Learning

You're reading from   MATLAB for Machine Learning Unlock the power of deep learning for swift and enhanced results

Arrow left icon
Product type Paperback
Published in Jan 2024
Publisher Packt
ISBN-13 9781835087695
Length 374 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Getting Started with Matlab
2. Chapter 1: Exploring MATLAB for Machine Learning FREE CHAPTER 3. Chapter 2: Working with Data in MATLAB 4. Part 2: Understanding Machine Learning Algorithms in MATLAB
5. Chapter 3: Prediction Using Classification and Regression 6. Chapter 4: Clustering Analysis and Dimensionality Reduction 7. Chapter 5: Introducing Artificial Neural Network Modeling 8. Chapter 6: Deep Learning and Convolutional Neural Networks 9. Part 3: Machine Learning in Practice
10. Chapter 7: Natural Language Processing Using MATLAB 11. Chapter 8: MATLAB for Image Processing and Computer Vision 12. Chapter 9: Time Series Analysis and Forecasting with MATLAB 13. Chapter 10: MATLAB Tools for Recommender Systems 14. Chapter 11: Anomaly Detection in MATLAB 15. Index 16. Other Books You May Enjoy

Exploring the model’s results

Evaluating results is an essential part of any CNN implementation process. This, of course, is true for any algorithm based on ML. Evaluation metrics are quantitative measures used to assess the performance and quality of a model, algorithm, or system in various tasks, such as ML, data analysis, and optimization. These metrics provide a way to objectively quantify how well a model is performing and to compare different models or approaches.

The type of metric to adopt obviously depends on the type of algorithm we are implementing; in the previous section, we implemented a CNN for the classification of the pistachio species. So, let’s take a look at the metrics available for this type of algorithm.

For a classification task, we can use the following metrics:

  • Accuracy: The proportion of correctly classified instances out of the total instances
  • Precision: The ratio of true positive predictions to the total number of positive...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime