Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering R for Quantitative Finance

You're reading from   Mastering R for Quantitative Finance Use R to optimize your trading strategy and build up your own risk management system

Arrow left icon
Product type Paperback
Published in Mar 2015
Publisher
ISBN-13 9781783552078
Length 362 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Toc

Table of Contents (15) Chapters Close

Preface 1. Time Series Analysis 2. Factor Models FREE CHAPTER 3. Forecasting Volume 4. Big Data – Advanced Analytics 5. FX Derivatives 6. Interest Rate Derivatives and Models 7. Exotic Options 8. Optimal Hedging 9. Fundamental Analysis 10. Technical Analysis, Neural Networks, and Logoptimal Portfolios 11. Asset and Liability Management 12. Capital Adequacy 13. Systemic Risks Index

Chapter 1. Time Series Analysis

In this chapter, we consider some advanced time series methods and their implementation using R. Time series analysis, as a discipline, is broad enough to fill hundreds of books (the most important references, both in theory and R programming, will be listed at the end of this chapter's reading list); hence, the scope of this chapter is necessarily highly selective, and we focus on topics that are inevitably important in empirical finance and quantitative trading. It should be emphasized at the beginning, however, that this chapter only sets the stage for further studies in time series analysis.

Our previous book Introduction to R for Quantitative Finance, Packt Publishing, discusses some fundamental topics of time series analysis such as linear, univariate time series modeling, Autoregressive integrated moving average (ARIMA), and volatility modeling Generalized Autoregressive Conditional Heteroskedasticity (GARCH). If you have never worked with R for time series analysis, you might want to consider going through Chapter 1, Time Series Analysis of that book as well.

The current edition goes further in all of these topics and you will become familiar with some important concepts such as cointegration, vector autoregressive models, impulse-response functions, volatility modeling with asymmetric GARCH models including exponential GARCH and Threshold GARCH models, and news impact curves. We first introduce the relevant theories, then provide some practical insights to multivariate time series modeling, and describe several useful R packages and functionalities. In addition, using simple and illustrative examples, we give a step-by-step introduction to the usage of R programming language for empirical analysis.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image