Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Mastering Data analysis with R

You're reading from   Mastering Data analysis with R Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781783982028
Length 396 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Gergely Daróczi Gergely Daróczi
Author Profile Icon Gergely Daróczi
Gergely Daróczi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Hello, Data! FREE CHAPTER 2. Getting Data from the Web 3. Filtering and Summarizing Data 4. Restructuring Data 5. Building Models (authored by Renata Nemeth and Gergely Toth) 6. Beyond the Linear Trend Line (authored by Renata Nemeth and Gergely Toth) 7. Unstructured Data 8. Polishing Data 9. From Big to Small Data 10. Classification and Clustering 11. Social Network Analysis of the R Ecosystem 12. Analyzing Time-series 13. Data Around Us 14. Analyzing the R Community A. References Index

By-passing missing values


So it seems that missing data relatively frequently occurs with the time-related variables, but we have no missing values among the flight identifiers and dates. On the other hand, if one value is missing for a flight, the chances are rather high that some other variables are missing as well – out of the overall number of 3,622 cases with at least one missing value:

> mean(cor(apply(hflights, 2, function(x)
+    as.numeric(is.na(x)))), na.rm = TRUE)
[1] 0.9589153
Warning message:
In cor(apply(hflights, 2, function(x) as.numeric(is.na(x)))) :
  the standard deviation is zero

Okay, let's see what we have done here! First, we have called the apply function to transform the values of data.frame to 0 or 1, where 0 stands for an observed, while 1 means a missing value. Then we computed the correlation coefficients of this newly created matrix, which of course returned a lot of missing values due to fact that some columns had only one unique value without any variability...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image