Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Apache Spark 2.x

You're reading from   Mastering Apache Spark 2.x Advanced techniques in complex Big Data processing, streaming analytics and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781786462749
Length 354 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Romeo Kienzler Romeo Kienzler
Author Profile Icon Romeo Kienzler
Romeo Kienzler
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. A First Taste and What’s New in Apache Spark V2 FREE CHAPTER 2. Apache Spark SQL 3. The Catalyst Optimizer 4. Project Tungsten 5. Apache Spark Streaming 6. Structured Streaming 7. Apache Spark MLlib 8. Apache SparkML 9. Apache SystemML 10. Deep Learning on Apache Spark with DeepLearning4j and H2O 11. Apache Spark GraphX 12. Apache Spark GraphFrames 13. Apache Spark with Jupyter Notebooks on IBM DataScience Experience 14. Apache Spark on Kubernetes

Clustering with K-Means


This example will use the same test data from the previous example, but we will attempt to find clusters in the data using the MLlib K-Means algorithm.

Theory on Clustering

The K-Means algorithm iteratively attempts to determine clusters within the test data by minimizing the distance between the mean value of cluster center vectors, and the new candidate cluster member vectors. The following equation assumes dataset members that range from X1 to Xn; it also assumes K cluster sets that range from S1 to Sk, where K <= n.

K-Means in practice

The K-Means MLlib functionality uses the LabeledPoint structure to process its data and so it needs numeric input data. As the same data from the last section is being reused, we will not explain the data conversion again. The only change that has been made in data terms in this section, is that processing in HDFS will now take place under the /data/spark/kmeans/ directory. Additionally, the conversion Scala script for the K-Means...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime