Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for Streaming Data with Python

You're reading from   Machine Learning for Streaming Data with Python Rapidly build practical online machine learning solutions using River and other top key frameworks

Arrow left icon
Product type Paperback
Published in Jul 2022
Publisher Packt
ISBN-13 9781803248363
Length 258 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joos Korstanje Joos Korstanje
Author Profile Icon Joos Korstanje
Joos Korstanje
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Part 1: Introduction and Core Concepts of Streaming Data
2. Chapter 1: An Introduction to Streaming Data FREE CHAPTER 3. Chapter 2: Architectures for Streaming and Real-Time Machine Learning 4. Chapter 3: Data Analysis on Streaming Data 5. Part 2: Exploring Use Cases for Data Streaming
6. Chapter 4: Online Learning with River 7. Chapter 5: Online Anomaly Detection 8. Chapter 6: Online Classification 9. Chapter 7: Online Regression 10. Chapter 8: Reinforcement Learning 11. Part 3: Advanced Concepts and Best Practices around Streaming Data
12. Chapter 9: Drift and Drift Detection 13. Chapter 10: Feature Transformation and Scaling 14. Chapter 11: Catastrophic Forgetting 15. Chapter 12: Conclusion and Best Practices 16. Other Books You May Enjoy

Chapter 9: Drift and Drift Detection

Throughout the previous chapters, you have discovered plenty of ways to build machine learning (ML) models that work in an online manner. They are able to update their learned decision rules from one single observation rather than having to retrain completely as is common in most ML models.

One reason that this is great is streaming, as these models will allow you to work and learn continuously. However, we could argue that a traditional ML model can also predict on a single observation. Even batch learning and offline models can predict a single new observation at a time. To get more insight into the added value of online ML, this chapter will go in depth into drift and drift detection.

To get to an improved understanding of those concepts, the chapter will start with an in-depth description of what drift is. You will then see different types of drift, including concept drift, data drift, and retraining strategy issues.

After that, you...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime