Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning for Mobile

You're reading from   Machine Learning for Mobile Practical guide to building intelligent mobile applications powered by machine learning

Arrow left icon
Product type Paperback
Published in Dec 2018
Publisher Packt
ISBN-13 9781788629355
Length 274 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Avinash Venkateswarlu Avinash Venkateswarlu
Author Profile Icon Avinash Venkateswarlu
Avinash Venkateswarlu
Revathi Gopalakrishnan Revathi Gopalakrishnan
Author Profile Icon Revathi Gopalakrishnan
Revathi Gopalakrishnan
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Machine Learning on Mobile FREE CHAPTER 2. Supervised and Unsupervised Learning Algorithms 3. Random Forest on iOS 4. TensorFlow Mobile in Android 5. Regression Using Core ML in iOS 6. The ML Kit SDK 7. Spam Message Detection 8. Fritz 9. Neural Networks on Mobile 10. Mobile Application Using Google Vision 11. The Future of ML on Mobile Applications 12. Question and Answers 13. Other Books You May Enjoy

Creating a text recognition app using Firebase on-cloud APIs

In this section, we are going to convert the on-device app to a cloud app. The difference is that on-device apps download the model and store it on the device. This allows for a lower inference time, allowing the app to make quick predictions.

By contrast, cloud-based apps upload the image to the Google server, meaning inference will happen there. It won't work if you are not connected to the internet.

In this case, why use a cloud-based model? Because on-device, the model has limited space and processing hardware, whereas Google's servers are scalable. The Google on-cloud text recognizer model is also able to decode multiple languages.

To get started, you need a Google Cloud subscription. Follow these steps:

  • Go to your Firebase project console
  • In the menu on the left, you will see that you are currently...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image