Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java: Data Science Made Easy

You're reading from   Java: Data Science Made Easy Data collection, processing, analysis, and more

Arrow left icon
Product type Course
Published in Jul 2017
Publisher Packt
ISBN-13 9781788475655
Length 734 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Alexey Grigorev Alexey Grigorev
Author Profile Icon Alexey Grigorev
Alexey Grigorev
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Jennifer L. Reese Jennifer L. Reese
Author Profile Icon Jennifer L. Reese
Jennifer L. Reese
Arrow right icon
View More author details
Toc

Table of Contents (29) Chapters Close

Title Page
Credits
Preface
1. Module 1 FREE CHAPTER
2. Getting Started with Data Science 3. Data Acquisition 4. Data Cleaning 5. Data Visualization 6. Statistical Data Analysis Techniques 7. Machine Learning 8. Neural Networks 9. Deep Learning 10. Text Analysis 11. Visual and Audio Analysis 12. Visual and Audio Analysis 13. Mathematical and Parallel Techniques for Data Analysis 14. Bringing It All Together 15. Module 2
16. Data Science Using Java 17. Data Processing Toolbox 18. Exploratory Data Analysis 19. Supervised Learning - Classification and Regression 20. Unsupervised Learning - Clustering and Dimensionality Reduction 21. Working with Text - Natural Language Processing and Information Retrieval 22. Extreme Gradient Boosting 23. Deep Learning with DeepLearning4J 24. Scaling Data Science 25. Deploying Data Science Models 26. Bibliography

Summary


The intent of this chapter was to illustrate how various data science tasks can be integrated into an application. We chose an application that processes tweets because it is a popular social medium and allows us to apply many of the techniques discussed in earlier chapters.

A simple console-based interface was used to avoid cluttering the discussion with specific but possibly irrelevant GUI details. The application prompted the user for a Twitter topic, a sub-topic, and the number of tweets to process. The analysis consisted of determining the sentiments of the tweets, with simple statistics regarding the positive or negative nature of the tweets.

The first step in the process was to build a sentiment model. We used LingPipe classes to build a model and perform the analysis. A Java 8 stream was used and supported a fluent style of programming where the individual processing steps could be easily added and removed.

Once the stream was created, the JSON raw text was processed and used...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime