Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Unsupervised Learning with Python

You're reading from   Hands-On Unsupervised Learning with Python Implement machine learning and deep learning models using Scikit-Learn, TensorFlow, and more

Arrow left icon
Product type Paperback
Published in Feb 2019
Publisher Packt
ISBN-13 9781789348279
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Unsupervised Learning FREE CHAPTER 2. Clustering Fundamentals 3. Advanced Clustering 4. Hierarchical Clustering in Action 5. Soft Clustering and Gaussian Mixture Models 6. Anomaly Detection 7. Dimensionality Reduction and Component Analysis 8. Unsupervised Neural Network Models 9. Generative Adversarial Networks and SOMs 10. Assessments 11. Other Books You May Enjoy

Anomaly Detection

In this chapter, we are going to discuss a practical application of unsupervised learning. Our goal is to train models that are either able to reproduce the probability density function of a specific data-generating process or to identify whether a given new sample is an inlier or an outlier. Generally speaking, we can say that the specific goal we want to pursue is finding anomalies, which are often samples that are very unlikely under the model (that is, given a probability distribution p(x) << λ where λ is a predefined threshold) or quite far from the centroid of the main distribution.

In particular, the chapter will comprise of the following topics:

  • A brief introduction to probability density functions and their basic properties
  • Histograms and their limitations
  • Kernel density estimation (KDE)
  • Bandwidth selection criteria
  • Univariate example...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime