Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Neural Networks with TensorFlow 2.0

You're reading from   Hands-On Neural Networks with TensorFlow 2.0 Understand TensorFlow, from static graph to eager execution, and design neural networks

Arrow left icon
Product type Paperback
Published in Sep 2019
Publisher Packt
ISBN-13 9781789615555
Length 358 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Paolo Galeone Paolo Galeone
Author Profile Icon Paolo Galeone
Paolo Galeone
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Neural Network Fundamentals
2. What is Machine Learning? FREE CHAPTER 3. Neural Networks and Deep Learning 4. Section 2: TensorFlow Fundamentals
5. TensorFlow Graph Architecture 6. TensorFlow 2.0 Architecture 7. Efficient Data Input Pipelines and Estimator API 8. Section 3: The Application of Neural Networks
9. Image Classification Using TensorFlow Hub 10. Introduction to Object Detection 11. Semantic Segmentation and Custom Dataset Builder 12. Generative Adversarial Networks 13. Bringing a Model to Production 14. Other Books You May Enjoy

What this book covers

Chapter 1, What is Machine Learning?, covers the fundamentals of machine learning: what supervised, unsupervised, and semi-supervised learning is and why these distinctions are important. Moreover, you will start to understand how to create a data pipeline, how to measure the performance of an algorithm, and how to validate your results.

Chapter 2, Neural Networks and Deep Learning, focuses on neural networks. You will learn about the strengths of machine learning models, how it is possible to make a network learn, and how, in practice, the model parameter update is performed. By the end of this chapter, you will understand the intuition behind backpropagation and network parameter updates. Moreover, you'll learn why deep neural network architectures are required to solve challenging tasks.

Chapter 3, TensorFlow Graph Architecture, covers the structure of TensorFlow – the structure that's shared between the 1.x and 2.x versions.

Chapter 4, TensorFlow 2.0 Architecture, demonstrates the difference between TensorFlow 1.x and TensorFlow 2.x. You'll start to develop some simple machine learning models using both these versions. You will also gain an understanding of all the common features of the two versions.

Chapter 5, Efficient Data Input Pipelines and Estimator API, shows how to define a complete data input pipeline using the tf.data API together with the use of the tf.estimator API to define experiments. By the end of this chapter, you'll be able to create complex and highly efficient input pipelines leveraging all the power of the tf.data and tf.io.gfile APIs.

Chapter 6, Image Classification Using TensorFlow Hub, covers how to use TensorFlow Hub to do transfer learning and fine-tuning easily by leveraging its tight integration with the Keras API.

Chapter 7, Introduction to Object Detection, shows how to extend your classifier, making it an object detector that regresses the coordinates of a bounding box, and also gives you an introduction to more complex object detection architectures.

Chapter 8, Semantic Segmentation and Custom Dataset Builder, covers how to implement a semantic segmentation network, how to prepare a dataset for this kind of task, and how to train and measure the performance of a model. You will solve a semantic segmentation problem using U-Net.

Chapter 9, Generative Adversarial Networks, covers GANs from a theoretical and practical point of view. You will gain an understanding of the structure of generative models and how the adversarial training can be easily implemented using TensorFlow 2.0.

Chapter 10, Bringing a Model to Production, shows how to go from a trained model to a complete application. This chapter also covers how to export a trained model to an indicated representation (SavedModel) and use it in a complete application. By the end of this chapter, you will be able to export a trained model and use it inside Python, TensorFlow.js, and also in Go using the tfgo library.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime