We saw that each layer has a depth that denoted the number of activation maps. These are also referred to as channels, where each channel contains an activation map, with a height and width of (n x n). Our first layer, for example, has 16 different maps of size 64 x 64. Similarly, the fourth layer has 16 activation maps of size 32 x 32. The eighth layer has 32 activation maps, each of size 16 x 16. Each of these activation maps was generated by a specific filter from its respective layer, and are passed forward to subsequent layers to encode higher-level features. This will concur with our smile detector model's architectural build, which we can always verify, as shown here:
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine