In this chapter, we talked about applying Bayesian learning in the case of learning parameters in HMMs. Bayesian learning has a few benefits over the maximum-likelihood estimator, but it turns out to be computationally quite expensive except when we have closed-form solutions. Closed-form solutions are only possible when we use conjugate priors. In the following chapters, we will discuss detailed applications of HMMs for a wide variety of problems.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand