Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Genetic Algorithms with Python

You're reading from   Hands-On Genetic Algorithms with Python Applying genetic algorithms to solve real-world deep learning and artificial intelligence problems

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781838557744
Length 346 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Eyal Wirsansky Eyal Wirsansky
Author Profile Icon Eyal Wirsansky
Eyal Wirsansky
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: The Basics of Genetic Algorithms
2. An Introduction to Genetic Algorithms FREE CHAPTER 3. Understanding the Key Components of Genetic Algorithms 4. Section 2: Solving Problems with Genetic Algorithms
5. Using the DEAP Framework 6. Combinatorial Optimization 7. Constraint Satisfaction 8. Optimizing Continuous Functions 9. Section 3: Artificial Intelligence Applications of Genetic Algorithms
10. Enhancing Machine Learning Models Using Feature Selection 11. Hyperparameter Tuning of Machine Learning Models 12. Architecture Optimization of Deep Learning Networks 13. Reinforcement Learning with Genetic Algorithms 14. Section 4: Related Technologies
15. Genetic Image Reconstruction 16. Other Evolutionary and Bio-Inspired Computation Techniques 17. Other Books You May Enjoy

Hyperparameter Tuning of Machine Learning Models

This chapter describes how genetic algorithms can be used to improve the performance of supervised machine learning models by tuning the hyperparameters of the models. The chapter will start with a brief introduction to hyperparameter tuning in machine learning before describing the concept of a grid search. After introducing the Wine dataset and the adaptive boosting classifier, both of which will be used throughout this chapter, we will demonstrate hyperparameter tuning using both a conventional grid search and a genetic algorithm-driven grid search. Finally, we will attempt to enhance the results we get by using a direct genetic algorithm approach for hyperparameter tuning.

By the end of this chapter, you will:

  • Understand the concept of hyperparameter tuning in machine learning
  • Be familiar with the Wine dataset and the adaptive...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime