In this chapter, we took a very close look at how the agents in ML-Agents perceive their environment and process input. An agent's perception of the environment is completely in control by the developer, and it is often a fine balance of how much or how little input/state you want to give an agent. We played with many examples in this chapter and started by taking an in-depth look at the Hallway sample and how an agent uses rays to perceive objects in the environment. Then, we looked at how an agent can use visual observations, not unlike us humans, as input or state that it may learn from. From this, we delved into the CNN architecture that ML-Agents uses to encode the visual observations it provides to the agent. We then learned how to modify this architecture by adding or removing convolution or pooling layers. Finally, we looked at the role of memory, or how recurrent...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand