Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Go: Building Web Applications

You're reading from   Go: Building Web Applications Building Web Applications

Arrow left icon
Product type Course
Published in Aug 2016
Publisher Packt
ISBN-13 9781787123496
Length 665 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Nathan Kozyra Nathan Kozyra
Author Profile Icon Nathan Kozyra
Nathan Kozyra
Mat Ryer Mat Ryer
Author Profile Icon Mat Ryer
Mat Ryer
Arrow right icon
View More author details
Toc

Preface

Since the late 1980s and early 1990s, there has been a slow flood of powerful new languages and paradigms—Perl, Python, Ruby, PHP, and JavaScript—have taken an expanding user base by storm and has become one of the most popular languages (up there with stalwarts such as C, C++, and Java). Multithreading, memory caching, and APIs have allowed multiple processes, dissonant languages, applications, and even separate operating systems to work in congress.

And while this is great, there's a niche that until very recently was largely unserved: powerful, compiled, cross-platform languages with concurrency support that are geared towards systems programmers.

So when Google announced Go in 2009, which included some of the best minds in language design (and programming in general)—Rob Pike and Ken Thompson of Bell Labs fame and Robert Griesemer, who worked on Google's JavaScript implementation V8—to design a modern, concurrent language with development ease at the forefront.

For Go programming bright future, the team focused on some sore spots in the alternatives, which are as follows:

  • Dynamically typed languages have—in recent years—become incredibly popular. Go eschews the explicit, "cumbersome" type systems of Java or C++. Go uses type inference, which saves development time, but is still also strongly typed.
  • Concurrency, parallelism, pointers/memory access, and garbage collection are unwieldy in the aforementioned languages. Go lets these concepts be as easy or as complicated as you want or need them to be.
  • As a newer language, Go has a focus on multicore design that was a necessary afterthought in languages such as C++.
  • Go's compiler is super-fast; it's so fast that there are implementations of it that treat Go code as interpreted.
  • Although Google designed Go to be a systems language, it's versatile enough to be used in a myriad of ways. Certainly, the focus on advanced, cheap concurrency makes it ideal for network and systems programming.
  • Go is loose with syntax, but strict with usage. By this we mean that Go will let you get a little lazy with some lexer tokens, but you still have to produce fundamentally tight code. As Go provides a formatting tool that attempts to clarify your code, you can also spend less time on readability concerns as you're coding
lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime