Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Generative Adversarial Networks Projects

You're reading from   Generative Adversarial Networks Projects Build next-generation generative models using TensorFlow and Keras

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781789136678
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Kailash Ahirwar Kailash Ahirwar
Author Profile Icon Kailash Ahirwar
Kailash Ahirwar
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Introduction to Generative Adversarial Networks 2. 3D-GAN - Generating Shapes Using GANs FREE CHAPTER 3. Face Aging Using Conditional GAN 4. Generating Anime Characters Using DCGANs 5. Using SRGANs to Generate Photo-Realistic Images 6. StackGAN - Text to Photo-Realistic Image Synthesis 7. CycleGAN - Turn Paintings into Photos 8. Conditional GAN - Image-to-Image Translation Using Conditional Adversarial Networks 9. Predicting the Future of GANs 10. Other Books You May Enjoy

Hyperparameter optimization

The model that we trained might not be a perfect model, but we can optimize the hyperparameters to improve it. There are many hyperparameters in a 3D-GAN that can be optimized. These include the following:

  • Batch size: Experiment with values of 8, 16, 32, 54, or 128 for the batch size.
  • The number of epochs: Experiment with 100 epochs and gradually increase it to 1,000-5,000.
  • Learning rate: This is the most important hyperparameter. Experiment with 0.1, 0.001, 0.0001, and other small learning rates.
  • Activation functions in different layers of the generator and the discriminator network: Experiment with sigmoid, tanh, ReLU, LeakyReLU, ELU, SeLU, and other activation functions.
  • The optimization algorithm: Experiment with Adam, SGD, Adadelta, RMSProp, and other optimizers available in the Keras framework.
  • Loss functions: Binary cross entropy is the loss...
You have been reading a chapter from
Generative Adversarial Networks Projects
Published in: Jan 2019
Publisher: Packt
ISBN-13: 9781789136678
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image