Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Forecasting Time Series Data with Facebook Prophet

You're reading from   Forecasting Time Series Data with Facebook Prophet Build, improve, and optimize time series forecasting models using the advanced forecasting tool

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781800568532
Length 270 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Greg Rafferty Greg Rafferty
Author Profile Icon Greg Rafferty
Greg Rafferty
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Getting Started
2. Chapter 1: The History and Development of Time Series Forecasting FREE CHAPTER 3. Chapter 2: Getting Started with Facebook Prophet 4. Section 2: Seasonality, Tuning, and Advanced Features
5. Chapter 3: Non-Daily Data 6. Chapter 4: Seasonality 7. Chapter 5: Holidays 8. Chapter 6: Growth Modes 9. Chapter 7: Trend Changepoints 10. Chapter 8: Additional Regressors 11. Chapter 9: Outliers and Special Events 12. Chapter 10: Uncertainty Intervals 13. Section 3: Diagnostics and Evaluation
14. Chapter 11: Cross-Validation 15. Chapter 12: Performance Metrics 16. Chapter 13: Productionalizing Prophet 17. Other Books You May Enjoy

Summary

In this chapter, you learned how to control the fit of the trend line by using changepoints. First, you used Divvy data to see how Prophet automatically selects potential changepoint locations and how you can control this by modifying the default number of potential changepoints and the changepoint range.

Then you learned a more robust way to control Prophet's changepoint selection through regularization. Just as with seasonality and holidays, changepoints are regularized by setting the prior scale. You then looked at the Instagram data of James Rodríguez and learned how to model the increase in likes per post he received both during and after the World Cups of 2014 and 2018. Finally, you learned how to blend these two techniques and enrich an automatically selected grid of potential changepoints with your custom changepoint locations.

In the next chapter, we will again look at the Divvy data, but this time we'll include the additional columns for temperature...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime