Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Effective Amazon Machine Learning

You're reading from   Effective Amazon Machine Learning Expert web services for machine learning on cloud

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781785883231
Length 306 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Alexis Perrier Alexis Perrier
Author Profile Icon Alexis Perrier
Alexis Perrier
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Machine Learning and Predictive Analytics FREE CHAPTER 2. Machine Learning Definitions and Concepts 3. Overview of an Amazon Machine Learning Workflow 4. Loading and Preparing the Dataset 5. Model Creation 6. Predictions and Performances 7. Command Line and SDK 8. Creating Datasources from Redshift 9. Building a Streaming Data Analysis Pipeline

Summary


In this chapter, we have moved away from the Amazon ML web interface and learned how to work with the service through the AWS CLI and the Python SDK. The commands and methods for both types of interaction are very similar. The functions and commands perform a standard set of operations from creation to deletion of Amazon ML objects: datasources, models, evaluation, and batch predictions. The fact that Amazon ML chains the sequence of dependent object creation allows you to create all the objects at once without having to wait for one upstream to finish (datasource or model) before creating the downstream one (model or evaluation). The waiter methods make it possible to wait for all evaluations to be completed before retrieving the results and making the necessary object deletion. 

We showed how scripting Amazon ML allowed us to implement Machine Learning methods such as cross-validation and Recursive Feature Selection, both very useful methods in predictive analytics. Although we...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image