Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Distributed Computing with Python

You're reading from   Distributed Computing with Python Harness the power of multiple computers using Python through this fast-paced informative guide

Arrow left icon
Product type Paperback
Published in Apr 2016
Publisher
ISBN-13 9781785889691
Length 170 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rasheedh B Rasheedh B
Author Profile Icon Rasheedh B
Rasheedh B
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. An Introduction to Parallel and Distributed Computing FREE CHAPTER 2. Asynchronous Programming 3. Parallelism in Python 4. Distributed Applications – with Celery 5. Python in the Cloud 6. Python on an HPC Cluster 7. Testing and Debugging Distributed Applications 8. The Road Ahead Index

A tour of Celery


What is a distributed task queue and how does Celery implement one? It turns out that distributed task queues are a type of architecture that has been around for quite some time. They are a form of master-worker architecture with a middleware layer that uses a set of queues for work requests (that is, the task queues) and a queue, or a storage area, to hold the results (that is, the result backend).

The master process (also called a client or producer) puts work requests (that is, tasks) into one of the task queues and fetches results from the result backend. Worker processes, on the other hand, subscribe to some or all of the task queues to know what work to perform and put their results (if any) into the result backend.

This is a very simple and flexible architecture. Master processes do not need to know how many workers are available nor on which machines they are running. They just need to know where the queues are and how to post a request for work.

The same can be said...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image