Summary
In this chapter we explored different cloud service providers who could provide the computing power necessary to train, evaluate, and deploy your deep learning models. We started by first understanding the types of cloud computing services available today. The chapter explored the Amazon, Google, and Microsoft IaaS services for creating a virtual machine. The different infrastructure options available in each were discussed. Next, we moved to SaaS services, specifically Jupyter Notebook on cloud. The chapter covered the Amazon SageMaker, Google Colaboratory, and Azure Notebooks. Just training a model is not sufficient; eventually we want to deploy it in a scalable manner. Thus, we delved into TensorFlow Extended, which allows users to develop and deploy ML models in a scalable, safe, and secure manner. Lastly, we introduced TensorFlow Enterprise, the latest offering in the TensorFlow ecosystem, and briefly discussed its features.