Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with MXNet Cookbook

You're reading from   Deep Learning with MXNet Cookbook Discover an extensive collection of recipes for creating and implementing AI models on MXNet

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781800569607
Length 370 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrés P. Torres Andrés P. Torres
Author Profile Icon Andrés P. Torres
Andrés P. Torres
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Chapter 1: Up and Running with MXNet FREE CHAPTER 2. Chapter 2: Working with MXNet and Visualizing Datasets – Gluon and DataLoader 3. Chapter 3: Solving Regression Problems 4. Chapter 4: Solving Classification Problems 5. Chapter 5: Analyzing Images with Computer Vision 6. Chapter 6: Understanding Text with Natural Language Processing 7. Chapter 7: Optimizing Models with Transfer Learning and Fine-Tuning 8. Chapter 8: Improving Training Performance with MXNet 9. Chapter 9: Improving Inference Performance with MXNet 10. Index 11. Other Books You May Enjoy

Solving Classification Problems

In the previous chapters, we learned how to set up and run MXNet, how to work with Gluon and DataLoader, and how to visualize datasets for regression, classification, image, and text problems. We also discussed the different learning methodologies. In this chapter, we are going to focus on supervised learning with classification problems. We will learn why these problems are suitable for deep learning models with an overview of the equations that define these problems. We will learn how to create suitable models for them and how to train them, emphasizing the choice of hyperparameters. We will end each section by evaluating the models according to our data, as expected in supervised learning, and we will look at the different evaluation criteria for classification problems.

Specifically, we will cover the following recipes:

  • Understanding math for classification models
  • Defining loss functions and evaluation metrics for classification
  • ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime