Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Analysis with IBM SPSS Statistics

You're reading from   Data Analysis with IBM SPSS Statistics Implementing data modeling, descriptive statistics and ANOVA

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787283817
Length 446 pages
Edition 1st Edition
Arrow right icon
Authors (2):
Arrow left icon
Ken Stehlik-Barry Ken Stehlik-Barry
Author Profile Icon Ken Stehlik-Barry
Ken Stehlik-Barry
Anthony Babinec Anthony Babinec
Author Profile Icon Anthony Babinec
Anthony Babinec
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Installing and Configuring SPSS 2. Accessing and Organizing Data FREE CHAPTER 3. Statistics for Individual Data Elements 4. Dealing with Missing Data and Outliers 5. Visually Exploring the Data 6. Sampling, Subsetting, and Weighting 7. Creating New Data Elements 8. Adding and Matching Files 9. Aggregating and Restructuring Data 10. Crosstabulation Patterns for Categorical Data 11. Comparing Means and ANOVA 12. Correlations 13. Linear Regression 14. Principal Components and Factor Analysis 15. Clustering 16. Discriminant Analysis

Summary

The example used a classic dataset to explore models relating car mileage to a set of design and performance features. One key insight was to work with a scaled version of the reciprocal of mpg rather than mpg itself. Another insight was to develop a parsimonious model, given the relatively small sample size and high ratio of variables to cases. A final insight was to create a predictor by taking the ratio of two predictors--hp and wt--rather than working with the manifest predictors.

Indeed, this was one of the points of the article by Henderson and Velleman, who cautioned against automated multiple regression model-building back in 1981! The model we ended up with is parsimonious, interpretable, and fits the data well.

In the next chapter, we turn to two important exploratory techniques: Principal Components Analysis and Factor Analysis.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime