Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Computer Architecture with Python and ARM

You're reading from   Computer Architecture with Python and ARM Learn how computers work, program your own, and explore assembly language on Raspberry Pi

Arrow left icon
Product type Paperback
Published in Jul 2023
Publisher Packt
ISBN-13 9781837636679
Length 412 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Alan Clements Alan Clements
Author Profile Icon Alan Clements
Alan Clements
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Using Python to Simulate a Computer
2. Chapter 1: From Finite State Machines to Computers FREE CHAPTER 3. Chapter 2: High-Speed Introduction to Python 4. Chapter 3: Data Flow in a Computer 5. Chapter 4: Crafting an Interpreter – First Steps 6. Chapter 5: A Little More Python 7. Chapter 6: TC1 Assembler and Simulator Design 8. Chapter 7: Extending the TC1 9. Chapter 8: Simulators for Other Architectures 10. Part 2: Using Raspberry Pi to Study a Real Computer Architecture
11. Chapter 9: Raspberry Pi: An Introduction 12. Chapter 10: A Closer Look at the ARM 13. Chapter 11: ARM Addressing Modes 14. Chapter 12: Subroutines and the Stack 15. Index 16. Other Books You May Enjoy Appendices – Summary of Key Concepts

Variable-length instructions

This short section provides ideas for experimentation with instructions and their formats and extends your understanding of instructions, their structure, and the trade-off involved in creating instruction sets. It is not designed to illustrate a real computer.

Like many computers, TC1 has fixed-length fields in its opcode; that is, the number of bits dedicated to each field is fixed and does not vary from instruction to instruction. There are always 16 bits in the literal field, even if the current instruction does not require a literal. Wasteful indeed. Since the purpose of TC1 is experimentation, we demonstrate how you might make the number of registers variable (i.e., user-definable). Adding more registers speeds up computation by requiring fewer memory accesses. However, there is a price; where do you get the extra bits that would be needed to specify the registers? Do you take the extra register bits from the opcode field (reducing the number of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image