Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Codeless Deep Learning with KNIME

You're reading from   Codeless Deep Learning with KNIME Build, train, and deploy various deep neural network architectures using KNIME Analytics Platform

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781800566613
Length 384 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Kathrin Melcher Kathrin Melcher
Author Profile Icon Kathrin Melcher
Kathrin Melcher
KNIME AG KNIME AG
Author Profile Icon KNIME AG
KNIME AG
Rosaria Silipo Rosaria Silipo
Author Profile Icon Rosaria Silipo
Rosaria Silipo
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Feedforward Neural Networks and KNIME Deep Learning Extension
2. Chapter 1: Introduction to Deep Learning with KNIME Analytics Platform FREE CHAPTER 3. Chapter 2: Data Access and Preprocessing with KNIME Analytics Platform 4. Chapter 3: Getting Started with Neural Networks 5. Chapter 4: Building and Training a Feedforward Neural Network 6. Section 2: Deep Learning Networks
7. Chapter 5: Autoencoder for Fraud Detection 8. Chapter 6: Recurrent Neural Networks for Demand Prediction 9. Chapter 7: Implementing NLP Applications 10. Chapter 8: Neural Machine Translation 11. Chapter 9: Convolutional Neural Networks for Image Classification 12. Section 3: Deployment and Productionizing
13. Chapter 10: Deploying a Deep Learning Network 14. Chapter 11: Best Practices and Other Deployment Options 15. Other Books You May Enjoy

What this book covers

Chapter 1, Introduction to Deep Learning with KNIME Analytics Platform, is a preparation chapter to get you familiar with the tool and the recent popularity of deep learning techniques.

Chapter 2, Data Access and Preprocessing with KNIME Analytics Platform, dives a bit deeper into the basic and advanced functionalities of KNIME Analytics Platform: from data access to workflow parameterization.

Chapter 3, Getting Started with Neural Networks, is the only theoretical chapter of the book. It paints an overview of the basic concepts around neural and deep learning networks and the algorithms used to train them.

Chapter 4, Building and Training a Feedforward Neural Network, is where we put into practice what we describe in Chapter 3, Getting Started with Neural Networks; we will build, train, and evaluate our first simple feedforward networks for classification tasks.

Chapter 5, Autoencoder for Fraud Detection, is where, with a neural autoencoder to solve the problem of fraud detection in credit card transactions, we start the series of case studies based on deep learning solutions.

Chapter 6, Recurrent Neural Networks for Demand Prediction, is where we introduce Long Short-Term Memory (LSTM) models in recurrent neural networks. Indeed, with their dynamic behavior, they are particularly effective in solving time series problems, such as a classic demand prediction problem.

Chapter 7, Implementing NLP Applications, covers how LSTM-based recurrent neural networks are often also used to implement solutions for natural language processing tasks. In this chapter, we cover a few case studies for free text generation, free name generation, and sentiment analysis.

Chapter 8, Neural Machine Translation, looks at an encoder-decoder architecture for automatic translations.

Chapter 9, Convolutional Neural Networks for Image Classification, covers a case study on image classification, which we could not miss. We classify histopathology images into cancer diagnoses using a convolutional neural network.

Chapter 10, Deploying a Deep Learning Network, starts describing the deployment phase. A simple example of the deployment workflow is explained in detail.

Chapter 11, Best Practices and Other Deployment Options, extends the previous chapter dedicated to deployment with more deployment options, such as web applications and REST services, and we conclude the book with a few tips and tricks.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image