Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building Data Science Solutions with Anaconda

You're reading from   Building Data Science Solutions with Anaconda A comprehensive starter guide to building robust and complete models

Arrow left icon
Product type Paperback
Published in May 2022
Publisher Packt
ISBN-13 9781800568785
Length 330 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Dan Meador Dan Meador
Author Profile Icon Dan Meador
Dan Meador
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: The Data Science Landscape – Open Source to the Rescue
2. Chapter 1: Understanding the AI/ML landscape FREE CHAPTER 3. Chapter 2: Analyzing Open Source Software 4. Chapter 3: Using the Anaconda Distribution to Manage Packages 5. Chapter 4: Working with Jupyter Notebooks and NumPy 6. Part 2: Data Is the New Oil, Models Are the New Refineries
7. Chapter 5: Cleaning and Visualizing Data 8. Chapter 6: Overcoming Bias in AI/ML 9. Chapter 7: Choosing the Best AI Algorithm 10. Chapter 8: Dealing with Common Data Problems 11. Part 3: Practical Examples and Applications
12. Chapter 9: Building a Regression Model with scikit-learn 13. Chapter 10: Explainable AI - Using LIME and SHAP 14. Chapter 11: Tuning Hyperparameters and Versioning Your Model 15. Other Books You May Enjoy

Summary

Every situation and dataset you see will be unique; however, the problems you encounter with them won't be. In this chapter, you saw issues that will come up repeatedly with the datasets you'll be working with.

We saw how having too much data can be a problem by having highly correlated features, and how you can find that correlation and remove it. We used the example of college recruiting points and rank, but you can easily find others in the real world, such as housing prices – you might have the price per square footage but also have those as separate features.

Working with categorical data is common, but at the end of the day, machine learning models need numbers to be able to work. We saw that there are times when we want to keep relationships between categorical values, such as a rating system, and other times when we don't. We saw how we can use one-hot encoding to encode these categories when we don't want to keep the relationships.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime