Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Artificial Vision and Language Processing for Robotics

You're reading from   Artificial Vision and Language Processing for Robotics Create end-to-end systems that can power robots with artificial vision and deep learning techniques

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781838552268
Length 356 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Gonzalo Molina Gallego Gonzalo Molina Gallego
Author Profile Icon Gonzalo Molina Gallego
Gonzalo Molina Gallego
Unai Garay Maestre Unai Garay Maestre
Author Profile Icon Unai Garay Maestre
Unai Garay Maestre
Álvaro Morena Alberola Álvaro Morena Alberola
Author Profile Icon Álvaro Morena Alberola
Álvaro Morena Alberola
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Artificial Vision and Language Processing for Robotics
Preface
1. Fundamentals of Robotics 2. Introduction to Computer Vision FREE CHAPTER 3. Fundamentals of Natural Language Processing 4. Neural Networks with NLP 5. Convolutional Neural Networks for Computer Vision 6. Robot Operating System (ROS) 7. Build a Text-Based Dialogue System (Chatbot) 8. Object Recognition to Guide a Robot Using CNNs 9. Computer Vision for Robotics Appendix

Chapter 8: Object Recognition to Guide a Robot Using CNNs


Activity 8: Multiple Object Detection and Recognition in Video

Solution

  1. Mount the drive:

    from google.colab import drive
    drive.mount('/content/drive')
    
    cd /content/drive/My Drive/C13550/Lesson08/
  2. Install the libraries:

    pip3 install https://github.com/OlafenwaMoses/ImageAI/releases/download/2.0.2/imageai-2.0.2-py3-none-any.whl
  3. Import the libraries:

    from imageai.Detection import VideoObjectDetection
    from matplotlib import pyplot as plt
  4. Declare the model:

    video_detector = VideoObjectDetection()
    video_detector.setModelTypeAsYOLOv3()
    video_detector.setModelPath("Models/yolo.h5")
    video_detector.loadModel()
  5. Declare the callback method:

    color_index = {'bus': 'red', 'handbag': 'steelblue', 'giraffe': 'orange', 'spoon': 'gray', 'cup': 'yellow', 'chair': 'green', 'elephant': 'pink', 'truck': 'indigo', 'motorcycle': 'azure', 'refrigerator': 'gold', 'keyboard': 'violet', 'cow': 'magenta', 'mouse': 'crimson', 'sports ball': 'raspberry', 'horse': 'maroon', 'cat': 'orchid', 'boat': 'slateblue', 'hot dog': 'navy', 'apple': 'cobalt', 'parking meter': 'aliceblue', 'sandwich': 'skyblue', 'skis': 'deepskyblue', 'microwave': 'peacock', 'knife': 'cadetblue', 'baseball bat': 'cyan', 'oven': 'lightcyan', 'carrot': 'coldgrey', 'scissors': 'seagreen', 'sheep': 'deepgreen', 'toothbrush': 'cobaltgreen', 'fire hydrant': 'limegreen', 'remote': 'forestgreen', 'bicycle': 'olivedrab', 'toilet': 'ivory', 'tv': 'khaki', 'skateboard': 'palegoldenrod', 'train': 'cornsilk', 'zebra': 'wheat', 'tie': 'burlywood', 'orange': 'melon', 'bird': 'bisque', 'dining table': 'chocolate', 'hair drier': 'sandybrown', 'cell phone': 'sienna', 'sink': 'coral', 'bench': 'salmon', 'bottle': 'brown', 'car': 'silver', 'bowl': 'maroon', 'tennis racket': 'palevilotered', 'airplane': 'lavenderblush', 'pizza': 'hotpink', 'umbrella': 'deeppink', 'bear': 'plum', 'fork': 'purple', 'laptop': 'indigo', 'vase': 'mediumpurple', 'baseball glove': 'slateblue', 'traffic light': 'mediumblue', 'bed': 'navy', 'broccoli': 'royalblue', 'backpack': 'slategray', 'snowboard': 'skyblue', 'kite': 'cadetblue', 'teddy bear': 'peacock', 'clock': 'lightcyan', 'wine glass': 'teal', 'frisbee': 'aquamarine', 'donut': 'mincream', 'suitcase': 'seagreen', 'dog': 'springgreen', 'banana': 'emeraldgreen', 'person': 'honeydew', 'surfboard': 'palegreen', 'cake': 'sapgreen', 'book': 'lawngreen', 'potted plant': 'greenyellow', 'toaster': 'ivory', 'stop sign': 'beige', 'couch': 'khaki'}
    
    def forFrame(frame_number, output_array, output_count, returned_frame):
    
        plt.clf()
    
        this_colors = []
        labels = []
        sizes = []
    
        counter = 0
    
        for eachItem in output_count:
            counter += 1
            labels.append(eachItem + " = " + str(output_count[eachItem]))
            sizes.append(output_count[eachItem])
            this_colors.append(color_index[eachItem])
    
        plt.subplot(1, 2, 1)
        plt.title("Frame : " + str(frame_number))
        plt.axis("off")
        plt.imshow(returned_frame, interpolation="none")
    
        plt.subplot(1, 2, 2)
        plt.title("Analysis: " + str(frame_number))
        plt.pie(sizes, labels=labels, colors=this_colors, shadow=True, startangle=140, autopct="%1.1f%%")
    
        plt.pause(0.01)
  6. Run Matplotlib and the video detection process:

    plt.show()
    
    video_detector.detectObjectsFromVideo(input_file_path="Dataset/videos/street.mp4", output_file_path="output-video" ,  frames_per_second=20, per_frame_function=forFrame,  minimum_percentage_probability=30, return_detected_frame=True, log_progress=True)

    The output will be as shown in the following frames:

    Figure 8.7: ImageAI video object detection output

As you can see, the model detects objects more or less properly. Now you can see the output video in your chapter 8 root directory with all the object detections in it.

Note

There is an additional video added in the Dataset/videos folder – park.mp4. You can use the steps just mentioned and recognize objects in this video as well.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at R$50/month. Cancel anytime