Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
A Handbook of Mathematical Models with Python

You're reading from   A Handbook of Mathematical Models with Python Elevate your machine learning projects with NetworkX, PuLP, and linalg

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781804616703
Length 144 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ranja Sarkar Ranja Sarkar
Author Profile Icon Ranja Sarkar
Ranja Sarkar
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1:Mathematical Modeling
2. Chapter 1: Introduction to Mathematical Modeling FREE CHAPTER 3. Chapter 2: Machine Learning vis-à-vis Mathematical Modeling 4. Part 2:Mathematical Tools
5. Chapter 3: Principal Component Analysis 6. Chapter 4: Gradient Descent 7. Chapter 5: Support Vector Machine 8. Chapter 6: Graph Theory 9. Chapter 7: Kalman Filter 10. Chapter 8: Markov Chain 11. Part 3:Mathematical Optimization
12. Chapter 9: Exploring Optimization Techniques 13. Chapter 10: Optimization Techniques for Machine Learning 14. Index 15. Other Books You May Enjoy

Gradient Descent

One optimization algorithm that lays the foundation for machine learning models is gradient descent (GD). GD is a simple and effective tool useful to train such models. Gradient descent, as the name suggests, involves “going downhill.” We choose a direction across a landscape and take whichever step gets us downhill. The step size depends on the slope (gradient) of the hill. In machine learning (ML) models, gradient descent estimates the error gradient, helping to minimize the cost function. Very few optimization methods are as computationally efficient as gradient descent. GD also lays the foundation for the optimization of deep learning models.

In problems where the parameters cannot be calculated analytically by use of linear algebra and must be searched by optimization, GD finds its best use. The algorithm works iteratively by moving in the direction of the steepest descent. At each iteration, the model parameters, such as coefficients in linear...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime