Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Art of Writing Efficient Programs

You're reading from   The Art of Writing Efficient Programs An advanced programmer's guide to efficient hardware utilization and compiler optimizations using C++ examples

Arrow left icon
Product type Paperback
Published in Oct 2021
Publisher Packt
ISBN-13 9781800208117
Length 464 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Fedor G. Pikus Fedor G. Pikus
Author Profile Icon Fedor G. Pikus
Fedor G. Pikus
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1 – Performance Fundamentals
2. Chapter 1: Introduction to Performance and Concurrency FREE CHAPTER 3. Chapter 2: Performance Measurements 4. Chapter 3: CPU Architecture, Resources, and Performance 5. Chapter 4: Memory Architecture and Performance 6. Chapter 5: Threads, Memory, and Concurrency 7. Section 2 – Advanced Concurrency
8. Chapter 6: Concurrency and Performance 9. Chapter 7: Data Structures for Concurrency 10. Chapter 8: Concurrency in C++ 11. Section 3 – Designing and Coding High-Performance Programs
12. Chapter 9: High-Performance C++ 13. Chapter 10: Compiler Optimizations in C++ 14. Chapter 11: Undefined Behavior and Performance 15. Chapter 12: Design for Performance 16. Assessments 17. Other Books You May Enjoy

Summary

In this chapter, we have learned about the C++ memory model and the guarantees it gives to the programmer. The result is a thorough understanding of the low level of what happens when multiple threads interact through shared data.

In multi-threaded programs, unsynchronized and unordered access to memory leads to undefined behavior and must be avoided at any cost. The cost, however, is usually paid in performance. While we always value a correct program over an incorrect but fast one, when it comes to memory synchronization, it is easy to overpay for correctness. We have seen different ways to manage concurrent memory accesses, their advantages, and tradeoffs. The simplest option is to lock all accesses to the shared data. The most elaborate implementation, on the other hand, uses atomic operations and restricts memory order as little as possible.

The first rule of performance is in full force here: performance must be measured, not guessed. This is even more important...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime