Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
scikit-learn Cookbook , Second Edition

You're reading from   scikit-learn Cookbook , Second Edition Over 80 recipes for machine learning in Python with scikit-learn

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781787286382
Length 374 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Trent Hauck Trent Hauck
Author Profile Icon Trent Hauck
Trent Hauck
Julian Avila Julian Avila
Author Profile Icon Julian Avila
Julian Avila
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. High-Performance Machine Learning – NumPy FREE CHAPTER 2. Pre-Model Workflow and Pre-Processing 3. Dimensionality Reduction 4. Linear Models with scikit-learn 5. Linear Models – Logistic Regression 6. Building Models with Distance Metrics 7. Cross-Validation and Post-Model Workflow 8. Support Vector Machines 9. Tree Algorithms and Ensembles 10. Text and Multiclass Classification with scikit-learn 11. Neural Networks 12. Create a Simple Estimator

Tuning a decision tree

We will continue to explore the iris dataset further by focusing on the first two features (sepal length and sepal width), optimizing the decision tree, and creating some visualizations.

Getting ready

  1. Load the iris dataset, focusing on the first two features. Additionally, split the data into training and testing sets:
from sklearn.datasets import load_iris

iris = load_iris()
X = iris.data[:,:2]
y = iris.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y)
  1. View the data with pandas:
import pandas as pd
pd.DataFrame(X,columns=iris.feature_names[:2])
  1. Before optimizing the decision tree, let's try a single decision...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime