Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Machine Learning By Example

You're reading from   R Machine Learning By Example Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher
ISBN-13 9781784390846
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Raghav Bali Raghav Bali
Author Profile Icon Raghav Bali
Raghav Bali
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Getting Started with R and Machine Learning FREE CHAPTER 2. Let's Help Machines Learn 3. Predicting Customer Shopping Trends with Market Basket Analysis 4. Building a Product Recommendation System 5. Credit Risk Detection and Prediction – Descriptive Analytics 6. Credit Risk Detection and Prediction – Predictive Analytics 7. Social Media Analysis – Analyzing Twitter Data 8. Sentiment Analysis of Twitter Data Index

Issues with recommendation systems

Recommender engines are affected mainly by the following two issues:

  • The sparsity problem: Recommender engines work upon user preferences (or ratings for different items, depending upon the application) to predict or recommend products. Usually the ratings are given on some chosen scale but the user may choose not to rate certain items which he/she hasn't bought or looked at. For such cases, the rating is blank or zero. Hence, the ratings matrix R has elements of the form:

    Issues with recommendation systems

    For any real world application, such as an e-commerce platform, the size of such a ratings matrix is huge due to the large number of users and items available on the platform. Even though a lot of user related information is gathered on such a platform, the ratings matrix itself might still be pretty sparse, that is the matrix might have a many elements as blanks (or zeroes). This problem in general is termed the sparsity problem. The sparsity problem renders the recommender engine...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime