Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Bioinformatics Cookbook

You're reading from   R Bioinformatics Cookbook Utilize R packages for bioinformatics, genomics, data science, and machine learning

Arrow left icon
Product type Paperback
Published in Oct 2023
Publisher Packt
ISBN-13 9781837634279
Length 396 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dan MacLean Dan MacLean
Author Profile Icon Dan MacLean
Dan MacLean
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Chapter 1: Setting Up Your R Bioinformatics Working Environment 2. Chapter 2: Loading, Tidying, and Cleaning Data in the tidyverse FREE CHAPTER 3. Chapter 3: ggplot2 and Extensions for Publication Quality Plots 4. Chapter 4: Using Quarto to Make Data-Rich Reports, Presentations, and Websites 5. Chapter 5: Easily Performing Statistical Tests Using Linear Models 6. Chapter 6: Performing Quantitative RNA-seq 7. Chapter 7: Finding Genetic Variants with HTS Data 8. Chapter 8: Searching Gene and Protein Sequences for Domains and Motifs 9. Chapter 9: Phylogenetic Analysis and Visualization 10. Chapter 10: Analyzing Gene Annotations 11. Chapter 11: Machine Learning with mlr3 12. Chapter 12: Functional Programming with purrr and base R 13. Chapter 13: Turbo-Charging Development in R with ChatGPT 14. Index 15. Other Books You May Enjoy

Technical requirements

We will use renv to manage packages in a project-specific way. To use renv to install packages, you will first need to install the renv package. You can do this by running the following commands in your R console:

  1. Install renv:
    install.packages("renv")
  2. Create a new renv environment:
    renv::init()

This will create a new directory called .renv in your current project directory.

  1. You can then install packages with the following command:
    renv::install_packages()
  2. You can also use the renv package manager to install Bioconductor packages by running the following command:
    renv::install("bioc::package name")
  3. For example, to install the Biobase package, you would run the following command:
    renv::install("bioc::Biobase")
  4. You can use renv to install development packages from GitHub like this:
    renv::install("user name/repo name")
  5. For example, to install the danmaclean user rbioinfcookbook package, you would run the following command:
    renv::install("danmaclean/rbioinfcookbook")

You can also install multiple packages at once by separating the package names with a comma. renv will automatically handle installing any required dependencies for the packages you install.

Under renv, all packages will be installed into the local project directory and not the main central library, meaning you can have multiple versions of the same package—a specific one for each project.

All the sample data you need for this package is in the specially created danmaclean/rbioinfcookbook data package on GitHub. The data will become available in your project after installing that.

For this chapter, we’ll need the following packages:

  • Regular packages:
    • dplyr
    • fs
    • readr
    • tidyr
    • stringr
    • purrr
  • GitHub:
    • danmaclean/rbioinfcookbook
  • Custom install:
    • datapasta

In addition to these packages, we will also need some R tools such as conda; all these will be described when needed.

Further information

The packages that require a custom install procedure will be described in the relevant recipes.

In R, it is normal practice to load a library and use functions directly by name. Although this is great in short interactive sessions, it can cause confusion when many packages are loaded at once and share function names. To clarify which package and function I am using at a given moment, I will occasionally use the packageName::functionName() convention.

Sometimes, in the middle of a recipe I’ll interrupt the code to dive into some intermediate output or to look at the structure of an object. When that happens, you’ll see a code block where each line begins with ## (double hash symbols). Consider the following command:

letters[1:5]

This will give us the following output:

## a b c d e

Note that the output lines are prefixed with ##.

You have been reading a chapter from
R Bioinformatics Cookbook - Second Edition
Published in: Oct 2023
Publisher: Packt
ISBN-13: 9781837634279
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image