Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Machine Learning Cookbook

You're reading from   Python Machine Learning Cookbook Over 100 recipes to progress from smart data analytics to deep learning using real-world datasets

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789808452
Length 642 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. The Realm of Supervised Learning FREE CHAPTER 2. Constructing a Classifier 3. Predictive Modeling 4. Clustering with Unsupervised Learning 5. Visualizing Data 6. Building Recommendation Engines 7. Analyzing Text Data 8. Speech Recognition 9. Dissecting Time Series and Sequential Data 10. Analyzing Image Content 11. Biometric Face Recognition 12. Reinforcement Learning Techniques 13. Deep Neural Networks 14. Unsupervised Representation Learning 15. Automated Machine Learning and Transfer Learning 16. Unlocking Production Issues 17. Other Books You May Enjoy

Normalization

Data normalization is used when you want to adjust the values in the feature vector so that they can be measured on a common scale. One of the most common forms of normalization that is used in machine learning adjusts the values of a feature vector so that they sum up to 1.

Getting ready

To normalize data, the preprocessing.normalize() function can be used. This function scales input vectors individually to a unit norm (vector length). Three types of norms are provided, l1, l2, or max, and they are explained next. If x is the vector of covariates of length n, the normalized vector is y=x/z, where z is defined as follows:

The norm is a function that assigns a positive length to each vector belonging to a vector space, except 0.

How to do it...

Let's see how to normalize data in Python:

  1. As we said, to normalize data, the preprocessing.normalize() function can be used as follows (we will use the same data as in the previous recipe):
>> data_normalized = preprocessing.normalize(data, norm='l1', axis=0)
  1. To display the normalized array, we will use the following code:
>> print(data_normalized)

The following output is returned:

[[ 0.75 -0.17045455  0.47619048  -0.45762712]
[ 0. 0.45454545 -0.07142857 0.1779661 ]
[ 0.25 0.375 -0.45238095 -0.36440678]]

This is used a lot to make sure that datasets don't get boosted artificially due to the fundamental nature of their features.

  1. As already mentioned, the normalized array along the columns (features) must return a sum equal to 1. Let's check this for each column:
>> data_norm_abs = np.abs(data_normalized)
>> print(data_norm_abs.sum(axis=0))

In the first line of code, we used the np.abs() function to evaluate the absolute value of each element in the array. In the second row of code, we used the sum() function to calculate the sum of each column (axis=0). The following results are returned:

[1. 1. 1. 1.]

Therefore, the sum of the absolute value of the elements of each column is equal to 1, so the data is normalized.

How it works...

In this recipe, we normalized the data at our disposal to the unitary norm. Each sample with at least one non-zero component was rescaled independently of other samples so that its norm was equal to one.

There's more...

Scaling inputs to a unit norm is a very common task in text classification and clustering problems.

See also

You have been reading a chapter from
Python Machine Learning Cookbook - Second Edition
Published in: Mar 2019
Publisher: Packt
ISBN-13: 9781789808452
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image