Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
OpenCV 3.x with Python By Example

You're reading from   OpenCV 3.x with Python By Example Make the most of OpenCV and Python to build applications for object recognition and augmented reality

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781788396905
Length 268 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Gabriel Garrido Calvo Gabriel Garrido Calvo
Author Profile Icon Gabriel Garrido Calvo
Gabriel Garrido Calvo
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Title Page
Copyright and Credits
Contributors
Packt Upsell
Preface
1. Applying Geometric Transformations to Images FREE CHAPTER 2. Detecting Edges and Applying Image Filters 3. Cartoonizing an Image 4. Detecting and Tracking Different Body Parts 5. Extracting Features from an Image 6. Seam Carving 7. Detecting Shapes and Segmenting an Image 8. Object Tracking 9. Object Recognition 10. Augmented Reality 11. Machine Learning by an Artificial Neural Network 1. Other Books You May Enjoy

How to augment our reality


Now that we know how to track planar objects, let's see how to overlay 3D objects on top of the real world. The objects are 3D but the video on our screen is 2D. So, the first step here is to understand how to map those 3D objects to 2D surfaces so that they look realistic. We just need to project those 3D points onto planar surfaces.

Mapping coordinates from 3D to 2D

Once we estimate the pose, we project the points from 3D to 2D. Consider the following image:

As we can see here, the TV remote control is a 3D object but we are seeing it on a 2D plane. Now if we move it around, it will look like this:

This 3D object is still on a 2D plane. The object has moved to a different location and the distance from the camera has changed as well. How do we compute these coordinates? We need a mechanism to map this 3D object onto the 2D surface. This is where 3D-to-2D projection becomes really important.

We just need to estimate the initial camera pose to start with. Now, let's...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime