Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
OpenCV 3.x with Python By Example

You're reading from   OpenCV 3.x with Python By Example Make the most of OpenCV and Python to build applications for object recognition and augmented reality

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781788396905
Length 268 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Gabriel Garrido Calvo Gabriel Garrido Calvo
Author Profile Icon Gabriel Garrido Calvo
Gabriel Garrido Calvo
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Title Page
Copyright and Credits
Contributors
Packt Upsell
Preface
1. Applying Geometric Transformations to Images FREE CHAPTER 2. Detecting Edges and Applying Image Filters 3. Cartoonizing an Image 4. Detecting and Tracking Different Body Parts 5. Extracting Features from an Image 6. Seam Carving 7. Detecting Shapes and Segmenting an Image 8. Object Tracking 9. Object Recognition 10. Augmented Reality 11. Machine Learning by an Artificial Neural Network 1. Other Books You May Enjoy

Affine transformations


In this section, we will discuss the various generalized geometrical transformations of 2D images. We have been using the function warpAffine quite a bit over the last couple of sections, it's about time we understood what's happening underneath.

Before talking about affine transformations, let's learn what Euclidean transformations are. Euclidean transformations are a type of geometric transformation that preserve length and angle measures. If we take a geometric shape and apply Euclidean transformation to it, the shape will remain unchanged. It might look rotated, shifted, and so on, but the basic structure will not change. So technically, lines will remain lines, planes will remain planes, squares will remain squares, and circles will remain circles.

Coming back to affine transformations, we can say that they are generalizations of Euclidean transformations. Under the realm of affine transformations, lines will remain lines, but squares might become rectangles or parallelograms. Basically, affine transformations don't preserve lengths and angles.

In order to build a general affine transformation matrix, we need to define the control points. Once we have these control points, we need to decide where we want them to be mapped. In this particular situation, all we need are three points in the source image, and three points in the output image. Let's see how we can convert an image into a parallelogram-like image:

import cv2
import numpy as np
img = cv2.imread('images/input.jpg')
rows, cols = img.shape[:2]
src_points = np.float32([[0,0], [cols-1,0], [0,rows-1]])
dst_points = np.float32([[0,0], [int(0.6*(cols-1)),0], [int(0.4*(cols-1)),rows-1]])
affine_matrix = cv2.getAffineTransform(src_points, dst_points)
img_output = cv2.warpAffine(img, affine_matrix, (cols,rows))
cv2.imshow('Input', img)
cv2.imshow('Output', img_output)
cv2.waitKey()

What just happened?

As we discussed earlier, we are defining control points. We just need three points to get the affine transformation matrix. We want the three points in src_points to be mapped to the corresponding points in dst_points. We are mapping the points as shown in the following image:

To get the transformation matrix, we have a function called in OpenCV. Once we have the affine transformation matrix, we use the function to apply this matrix to the input image.

Following is the input image:

If you run the preceding code, the output will look something like this:

We can also get the mirror image of the input image. We just need to change the control points in the following way:

src_points = np.float32([[0,0], [cols-1,0], [0,rows-1]])
dst_points = np.float32([[cols-1,0], [0,0], [cols-1,rows-1]])

Here, the mapping looks something like this:

If you replace the corresponding lines in our affine transformation code with these two lines, you will get the following result:

You have been reading a chapter from
OpenCV 3.x with Python By Example - Second Edition
Published in: Jan 2018
Publisher: Packt
ISBN-13: 9781788396905
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime