Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Neural Networks with R

You're reading from   Neural Networks with R Build smart systems by implementing popular deep learning models in R

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781788397872
Length 270 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Balaji Venkateswaran Balaji Venkateswaran
Author Profile Icon Balaji Venkateswaran
Balaji Venkateswaran
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface 1. Neural Network and Artificial Intelligence Concepts 2. Learning Process in Neural Networks FREE CHAPTER 3. Deep Learning Using Multilayer Neural Networks 4. Perceptron Neural Network Modeling – Basic Models 5. Training and Visualizing a Neural Network in R 6. Recurrent and Convolutional Neural Networks 7. Use Cases of Neural Networks – Advanced Topics

Unsupervised learning

In unsupervised learning (or self organization), the output layer is trained to organize the input data into another set of data without the need of a target variable. The input data is analyzed and patterns are found in it to derive the output, as shown in the following figure. Since there is no teacher (or target variable), this type of learning is called unsupervised learning.

The different techniques available for unsupervised learning are as follows:

  • Clustering (K-means, hierarchical)
  • Association techniques
  • Dimensionality reduction
  • Self Organizing Map (SOM)/ Kohonen networks

To summarize, the two main types of machine learning are depicted in the following figure:

For neural networks, we have both the types available, using different ways available in R.

You have been reading a chapter from
Neural Networks with R
Published in: Sep 2017
Publisher: Packt
ISBN-13: 9781788397872
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image