Apache Spark is an in-memory, cluster-based, parallel processing system that provides a wide range of functionality such as graph processing, machine learning, stream processing, and SQL. This book aims to take your limited knowledge of Spark to the next level by teaching you how to expand your Spark functionality.
The book opens with an overview of the Spark ecosystem. The book will introduce you to Project Catalyst and Tungsten. You will understand how Memory Management and Binary Processing, Cache-aware Computation, and Code Generation are used to speed things up dramatically. The book goes on to show how to incorporate H20 and Deeplearning4j for machine learning and Juypter Notebooks, Zeppelin, Docker and Kubernetes for cloud-based Spark. During the course of the book, you will also learn about the latest enhancements in Apache Spark 2.2, such as using the DataFrame and Dataset APIs exclusively, building advanced, fully automated Machine Learning pipelines with SparkML and perform graph analysis using the new GraphFrames API.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine