Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Engineering with Python

You're reading from   Machine Learning Engineering with Python Manage the production life cycle of machine learning models using MLOps with practical examples

Arrow left icon
Product type Paperback
Published in Nov 2021
Publisher Packt
ISBN-13 9781801079259
Length 276 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Andrew P. McMahon Andrew P. McMahon
Author Profile Icon Andrew P. McMahon
Andrew P. McMahon
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Section 1: What Is ML Engineering?
2. Chapter 1: Introduction to ML Engineering FREE CHAPTER 3. Chapter 2: The Machine Learning Development Process 4. Section 2: ML Development and Deployment
5. Chapter 3: From Model to Model Factory 6. Chapter 4: Packaging Up 7. Chapter 5: Deployment Patterns and Tools 8. Chapter 6: Scaling Up 9. Section 3: End-to-End Examples
10. Chapter 7: Building an Example ML Microservice 11. Chapter 8: Building an Extract Transform Machine Learning Use Case 12. Other Books You May Enjoy

Understanding the batch processing problem

In Chapter 1, Introduction to ML Engineering, we saw the scenario of a taxi firm that wanted to analyze anomalous rides at the end of every day. The customer had the following requirements:

  • Rides should be clustered based on ride distance and time and anomalies/outliers identified.
  • Speed (distance/time) was not to be used, as analysts would like to understand long-distance rides or those of long duration.
  • The analysis should be carried out on a daily schedule.
  • The data for inference should be consumed from the company's data lake.
  • The results should be made available for consumption by other company systems.

As we did in Chapter 2, The Machine Learning Development Process, and Chapter 7, Building an Example ML Microservice, we can now build out some user stories from these requirements, as follows:

  • User story 1: As an operations analyst, I want to be given clear labels of rides that have anomalously...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime