Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

You're reading from   Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization Create user-kernel interfaces, work with peripheral I/O, and handle hardware interrupts

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781801079518
Length 452 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Section 1: Character Device Driver Basics
2. Writing a Simple misc Character Device Driver FREE CHAPTER 3. User-Kernel Communication Pathways 4. Working with Hardware I/O Memory 5. Handling Hardware Interrupts 6. Working with Kernel Timers, Threads, and Workqueues 7. Section 2: Delving Deeper
8. Kernel Synchronization - Part 1 9. Kernel Synchronization - Part 2 10. Other Books You May Enjoy

Device driver modifications

To see how our bad misc driver's write method changes, we will continue looking at the same diff (of our bad versus good drivers) that we did in the Bad driver – buggy read() section. The comments in the code from the following diff operation are quite self-explanatory. Check it out:

// in ch1/bad_miscdrv
$ diff -u ../miscdrv_rdwr/miscdrv_rdwr.c bad_miscdrv.c
[...]
// << this is within the driver's write method >>
static ssize_t write_miscdrv_rdwr(struct file *filp, const char __user *ubuf,
size_t count, loff_t *off)
{
int ret = count;
struct device *dev = ctx->dev;
+ void *new_dest = NULL;
[ ... ]
+#define DANGER_GETROOT_BUG
+//#undef DANGER_GETROOT_BUG
+#ifdef DANGER_GETROOT_BUG
+ /* Make the destination of the copy_from_user() point to the current
+ * process context's (real) UID; this way, we redirect the driver to
+ * write zero's here. Why? Simple: traditionally, a UID == 0 is what
+ * defines root capability!
+ */
+ new_dest = &current->cred->uid;
+ count = 4; /* change count as we're only updating a 32-bit quantity */
+ pr_info(" [current->cred=%px]\n", (TYPECST)current->cred);
+#else
+ new_dest = kbuf;
+#endif

The key point from the preceding code is that when the DANGER_GETROOT_BUG macro is defined (it is by default), we set the new_dest pointer to the address of the (real) UID member within the credential structure, which is itself within the task structure (referenced by current) for this process context! (If all of this sounds foreign, please read the companion guide Linux Kernel Programming, Chapter 6, Kernel Internals Essentials – Processes and Threads). This way, when we invoke the copy_to_user() routine to perform the write to user space, it's going to actually write zeroes to the process UID member within current->cred. A UID of zero is what (traditionally) defines root. Also, notice how we restrict the write to 4 bytes (as we're just writing a 32-bit quantity).

(By the way, the build on our "bad" driver does issue a warning; here, with it being intentional, we merely ignore it):

Linux-Kernel-Programming-Part-2/ch1/bad_miscdrv/bad_miscdrv.c:229:11: warning: assignment discards ‘const’ qualifier from pointer target type [-Wdiscarded-qualifiers]
229 | new_dest = &current->cred->uid;
| ^

Here's the copy_from_user() code invocation:

[...]
+ dev_info(dev, "dest addr = " ADDRFMT "\n", (TYPECST)new_dest);
ret = -EFAULT;
- if (copy_from_user(kbuf, ubuf, count)) {
+ if (copy_from_user(new_dest, ubuf, count)) {
dev_warn(dev, "copy_from_user() failed\n");
goto out_cfu;
}
[...]

Clearly, the preceding copy_to_user() routine will write the user-supplied buffer, ubuf, into the new_dest destination buffer – which, crucially, we have made point to current->cred->uid – for count bytes.

You have been reading a chapter from
Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization
Published in: Mar 2021
Publisher: Packt
ISBN-13: 9781801079518
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image