Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Predictive Analytics with Python

You're reading from   Learning Predictive Analytics with Python Gain practical insights into predictive modelling by implementing Predictive Analytics algorithms on public datasets with Python

Arrow left icon
Product type Paperback
Published in Feb 2016
Publisher
ISBN-13 9781783983261
Length 354 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ashish Kumar Ashish Kumar
Author Profile Icon Ashish Kumar
Ashish Kumar
Gary Dougan Gary Dougan
Author Profile Icon Gary Dougan
Gary Dougan
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with Predictive Modelling FREE CHAPTER 2. Data Cleaning 3. Data Wrangling 4. Statistical Concepts for Predictive Modelling 5. Linear Regression with Python 6. Logistic Regression with Python 7. Clustering with Python 8. Trees and Random Forests with Python 9. Best Practices for Predictive Modelling A. A List of Links
Index

Model validation


Any predictive model needs to be validated to see how it is performing on different sets of data, whether the accuracy of the model is constant over all the sources of similar data or not. This checks the problem of over-fitting, wherein the model fits very well on one set of data but doesn't fit that well on another dataset. One common method is to validate a model train-test split of the dataset. Another method is k-fold cross validation, about which we will learn more in the later chapter.

Training and testing data split

Ideally, this step should be done right at the onset of the modelling process so that there are no sampling biases in the model; in other words, the model should perform well even for a dataset that has the same predictor variables, but their means and variances are very different from what the model has been built upon. This can happen because the dataset on which the model is built (training) and the one on which it is applied (testing) can come from...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime