Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning OpenCV 4 Computer Vision with Python 3

You're reading from   Learning OpenCV 4 Computer Vision with Python 3 Get to grips with tools, techniques, and algorithms for computer vision and machine learning

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781789531619
Length 372 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Joe Minichino Joe Minichino
Author Profile Icon Joe Minichino
Joe Minichino
Joseph Howse Joseph Howse
Author Profile Icon Joseph Howse
Joseph Howse
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Setting Up OpenCV 2. Handling Files, Cameras, and GUIs FREE CHAPTER 3. Processing Images with OpenCV 4. Depth Estimation and Segmentation 5. Detecting and Recognizing Faces 6. Retrieving Images and Searching Using Image Descriptors 7. Building Custom Object Detectors 8. Tracking Objects 9. Camera Models and Augmented Reality 10. Introduction to Neural Networks with OpenCV 11. Other Book You May Enjoy Appendix A: Bending Color Space with the Curves Filter

Detecting cars

To train any kind of classifier, we must begin by creating or acquiring a training dataset. We are going to train a car detector, so our dataset must contain positive samples that represent cars, as well as negative samples that represent other (non-car) things that the detector is likely to encounter while looking for cars. For example, if the detector is intended to search for cars on a street, then a picture of a curb, a crosswalk, a pedestrian, or a bicycle might be a more representative negative sample than a picture of the rings of Saturn. Besides representing the expected subject matter, ideally, the training samples should represent the way our particular camera and algorithm will see the subject matter.

Ultimately, in this chapter, we intend to use a sliding window of fixed size, so it is important that our training samples conform to a fixed size, and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime