Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Jupyter for Data Science

You're reading from   Jupyter for Data Science Exploratory analysis, statistical modeling, machine learning, and data visualization with Jupyter

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781785880070
Length 242 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dan Toomey Dan Toomey
Author Profile Icon Dan Toomey
Dan Toomey
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Jupyter and Data Science FREE CHAPTER 2. Working with Analytical Data on Jupyter 3. Data Visualization and Prediction 4. Data Mining and SQL Queries 5. R with Jupyter 6. Data Wrangling 7. Jupyter Dashboards 8. Statistical Modeling 9. Machine Learning Using Jupyter 10. Optimizing Jupyter Notebooks

Using Python to compare ratings


In the previous examples we used R to work through data frames that were built from converted JSON to CSV files. If we were to use the Yelp businesses rating file we could use Python directly, as it is much smaller and produces similar results.

In this example, we gather cuisines from the Yelp file based on whether the business category includes restaurants. We accumulate the ratings for all cuisines and then produce averages for each.

We read in the JSON file into separate lines and convert each line into a Python object:

Note

We convert each line to Unicode with the errors=ignore option. This is due to many erroneous characters present in the data file.

import json#filein = 'c:/Users/Dan/business.json'filein = 'c:/Users/Dan/yelp_academic_dataset_business.json'lines = list(open(filein))

We use a dictionary for the ratings for a cuisine. The key of the dictionary is the name of the cuisine. The value of the dictionary is a list of ratings for that cuisine:

ratings...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image