Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
IPython Interactive Computing and Visualization Cookbook

You're reading from   IPython Interactive Computing and Visualization Cookbook Harness IPython for powerful scientific computing and Python data visualization with this collection of more than 100 practical data science recipes

Arrow left icon
Product type Paperback
Published in Sep 2014
Publisher
ISBN-13 9781783284818
Length 512 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Cyrille Rossant Cyrille Rossant
Author Profile Icon Cyrille Rossant
Cyrille Rossant
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. A Tour of Interactive Computing with IPython FREE CHAPTER 2. Best Practices in Interactive Computing 3. Mastering the Notebook 4. Profiling and Optimization 5. High-performance Computing 6. Advanced Visualization 7. Statistical Data Analysis 8. Machine Learning 9. Numerical Optimization 10. Signal Processing 11. Image and Audio Processing 12. Deterministic Dynamical Systems 13. Stochastic Dynamical Systems 14. Graphs, Geometry, and Geographic Information Systems 15. Symbolic and Numerical Mathematics Index

Finding points of interest in an image


In an image, points of interest are positions where there might be edges, corners, or interesting objects. For example, in a landscape picture, points of interest can be located near a house or a person. Detecting points of interest is useful in image recognition, computer vision, or medical imaging.

In this recipe, we will find points of interest in an image with scikit-image. This will allow us to crop an image around the subject of the picture, even when this subject is not in the center of the image.

Getting ready

Download the Child dataset from the book's GitHub repository at https://github.com/ipython-books/cookbook-data, and extract it into the current directory.

How to do it...

  1. Let's import the packages:

    In [1]: import numpy as np
            import matplotlib.pyplot as plt
            import skimage
            import skimage.feature as sf
            %matplotlib inline
  2. We create a function to display a colored or grayscale image:

    In [2]: def show(img, cmap=None)...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime