Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Intelligent Workloads at the Edge

You're reading from   Intelligent Workloads at the Edge Deliver cyber-physical outcomes with data and machine learning using AWS IoT Greengrass

Arrow left icon
Product type Paperback
Published in Jan 2022
Publisher Packt
ISBN-13 9781801811781
Length 374 pages
Edition 1st Edition
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ryan Burke Ryan Burke
Author Profile Icon Ryan Burke
Ryan Burke
Indraneel (Neel) Mitra Indraneel (Neel) Mitra
Author Profile Icon Indraneel (Neel) Mitra
Indraneel (Neel) Mitra
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Introduction and Prerequisites
2. Chapter 1: Introduction to the Data-Driven Edge with Machine Learning FREE CHAPTER 3. Section 2: Building Blocks
4. Chapter 2: Foundations of Edge Workloads 5. Chapter 3: Building the Edge 6. Chapter 4: Extending the Cloud to the Edge 7. Chapter 5: Ingesting and Streaming Data from the Edge 8. Chapter 6: Processing and Consuming Data on the Cloud 9. Chapter 7: Machine Learning Workloads at the Edge 10. Section 3: Scaling It Up
11. Chapter 8: DevOps and MLOps for the Edge 12. Chapter 9: Fleet Management at Scale 13. Section 4: Bring It All Together
14. Chapter 10: Reviewing the Solution with AWS Well-Architected Framework 15. Other Books You May Enjoy Appendix 1 – Answer Key

Chapter 1: Introduction to the Data-Driven Edge with Machine Learning

The purpose of this book is to share prescriptive patterns for the end-to-end (E2E) development of solutions that run at the edge, the space in the computing topology nearest to where the analog interfaces the digital and vice versa. Specifically, the book focuses on those edge use cases where machine learning (ML) technologies bring the most value and teaches you how to develop these solutions with contemporary tools provided by Amazon Web Services (AWS).

In this chapter, you will learn about the foundations for cyber-physical outcomes and the challenges, personas, and tools common to delivering these outcomes. This chapter briefly introduces the smart home and industrial internet of things (IoT) settings and sets the scene that will steer the hands-on project built throughout the book. It will describe how ML is transforming our ability to accelerate decision-making beyond the cloud. You will learn about the scope of the E2E project that you will build using AWS services such as AWS IoT Greengrass and Amazon SageMaker. You will also learn what kinds of technical requirements are needed before moving on to the first hands-on chapter, Chapter 2, Foundations of Edge Workloads.

The following topics will be covered in this chapter:

  • Living on the edge
  • Bringing ML to the edge
  • Tools to get the job done
  • Demand for smart home and industrial IoT
  • Setting the scene: A modern smart home solution
  • Hands-on prerequisites
You have been reading a chapter from
Intelligent Workloads at the Edge
Published in: Jan 2022
Publisher: Packt
ISBN-13: 9781801811781
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image