Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Python Natural Language Processing

You're reading from   Hands-On Python Natural Language Processing Explore tools and techniques to analyze and process text with a view to building real-world NLP applications

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781838989590
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Mayank Rasu Mayank Rasu
Author Profile Icon Mayank Rasu
Mayank Rasu
Aman Kedia Aman Kedia
Author Profile Icon Aman Kedia
Aman Kedia
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Introduction
2. Understanding the Basics of NLP FREE CHAPTER 3. NLP Using Python 4. Section 2: Natural Language Representation and Mathematics
5. Building Your NLP Vocabulary 6. Transforming Text into Data Structures 7. Word Embeddings and Distance Measurements for Text 8. Exploring Sentence-, Document-, and Character-Level Embeddings 9. Section 3: NLP and Learning
10. Identifying Patterns in Text Using Machine Learning 11. From Human Neurons to Artificial Neurons for Understanding Text 12. Applying Convolutions to Text 13. Capturing Temporal Relationships in Text 14. State of the Art in NLP 15. Other Books You May Enjoy

Why should I learn NLP?

AI is rapidly penetrating various facets of our lives, from being our home assistant to fielding our queries as automated tech support. Various industry outlook reports project that AI will create millions of jobs (projection range between 200 and 500 million) worldwide by the year 2030. The majority of these jobs will require ML and NLP skills, and therefore it is imperative for engineers and technologists to upskill and prepare for the impending AI revolution and the rapidly evolving tech landscape.

NLP consistently features as the fastest-growing skill in demand by Upwork (largest freelancing platform), and the job listings with an NLP tag continue to feature prominently on various job boards. Since NLP is a subfield of ML, organizations typically hire candidates as ML engineers to work on NLP projects. You could be working on the most cutting-edge ideas in large technology firms or implementing NLP technology-based applications in banks, e-commerce organizations, and so on. The exact work performed by NLP engineers can vary from project to project. However, working with large volumes of unstructured data, preprocessing data, reading research papers on the new development in the field, tuning model parameters, continuous improvement, and so on are some of the tasks that are commonly performed. The authors, having worked on several NLP projects and having followed the latest industry trends closely, can safely state that it's a very exciting time to work in the field of NLP.

You can benefit from learning about NLP even if you are simply a tech enthusiast and not particularly looking for a job as an NLP engineer. You can expect to build reasonably sophisticated NLP applications and tools on your MacBook or PC, on a shoestring budget. It is not surprising, therefore, that there has been a surge of start-ups providing NLP-based solutions to enterprises and retail clients.

A few of the exciting start-ups in this area are listed as follows:

  • Luminance: Legal tech start-up aimed at analyzing legal documents
  • NetBase: Real-time social media feed analytics
  • Agolo: Summarizes large bodies of text at scale
  • Idibon: Converts unstructured data to structured data

This area is also witnessing brisk acquisition activities with larger tech companies acquiring start-ups (Samsung acquired Kngine; Reliance Communications acquired chatbot start-up Haptik; and so on). Given the low barriers for entry and easily accessible open source technologies, this trend is expected to continue.

Now that we have familiarized ourselves with NLP and the benefits of gaining proficiency in this area, we will discuss the current and evolving applications of NLP.

You have been reading a chapter from
Hands-On Python Natural Language Processing
Published in: Jun 2020
Publisher: Packt
ISBN-13: 9781838989590
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image