In the previous chapters, you learned about the direct encoding of ANNs using the nature-inspired conception of a genotype that is mapped to the phenotype in a 1:1 ratio to represent the ANN topology. This mapping allows us to use advanced NEAT algorithm features such as an innovation number, which allows us to track when a particular mutation was introduced during the evolution. Each gene in the genome has a specific value of the innovation number, allowing fast and accurate crossover of parent genomes to produce offspring. While this feature introduces immense benefits and also reduces the computational costs needed to match the parent genomes during the recombination, the direct encoding used to encode the ANN topology of the phenotype has a significant drawback as it limits the size of the encoded ANN. The bigger the encoded ANN, the bigger...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand